Особая точка функции

Особая точка функции
Особая точка указывает сюда. См. также особая точка (дифференциальные уравнения).

Особенность или сингулярность в математике это точка, в которой математический объект (обычно функция) не определён или имеет нерегулярное поведение (например, точка в которой функция недифференцируема).

Особенности в комплексном анализе

Комплексный анализ рассматривает особенности голоморфных (более общо: аналитических) функций — точки комплексной плоскости, в которой эта функция не определена, её предел бесконечен либо предела не существует вовсе. В случае точек ветвления аналитических функций функция в особой точке может быть определена и непрерывна, но не являться аналитичной.

Особенности в действительном анализе

Функция f(x) = 1 / x имеет особую точку в нуле, где она стремится к положительной бесконечности справа и к отрицательной бесконечности — слева (точка разрыва второго рода).  ·  Функция g(x) = | x | также имеет особенность в нуле, где она недифференцируема.
 
График, определённый выражением y2 = x, имеет в нуле особенность — вертикальную касательную. Кривая, заданная уравнением y2 = x3 + x2, имеет в (0,0) особенность — точку самопересечения.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "Особая точка функции" в других словарях:

  • ОСОБАЯ ТОЧКА — аналитической функции точка, в которой нарушается аналитичность функции …   Большой Энциклопедический словарь

  • ОСОБАЯ ТОЧКА — аналитической функции точка, в к рой нарушаются условия аналитичности. Если аналитическаяфункция f(z )задана в нек рой окрестности точки z0 всюду …   Физическая энциклопедия

  • Особая точка —         в математике.          1) Особая точка кривой, заданной уравнением F (x, у) = 0, точка М0(х0, y0), в которой обе частные производные функции F (x, у) обращаются в нуль:                   Если при этом не все вторые частные производные… …   Большая советская энциклопедия

  • ОСОБАЯ ТОЧКА — 1) О. т. аналитической функции f(z) препятствие для аналитического продолжения элемента функции f(z) комплексного переменного zвдоль какого либо пути на плоскости этого переменного. Пусть аналитическая функция f(z) определена некоторым… …   Математическая энциклопедия

  • особая точка — аналитической функции, точка, в которой нарушается аналитичность функции. * * * ОСОБАЯ ТОЧКА ОСОБАЯ ТОЧКА аналитической функции, точка, в которой нарушается аналитичность функции …   Энциклопедический словарь

  • ПОДВИЖНАЯ ОСОБАЯ ТОЧКА — особая точка z0 решения дифференциального уравнения F(z, w, w )=0 (F аналитич. функция), рассматриваемого как функция w(z).комплексного переменного z, при условии, что решения того же уравнения с близкими начальными данными имеют близкие к z0… …   Математическая энциклопедия

  • СУЩЕСТВЕННО ОСОБАЯ ТОЧКА — изолированная особая точка а однозначного характера аналитич. ции f(z) комплексного переменного z, для к рой не существует никакого, конечного или бесконечного, предела В достаточно малой проколотой окрестности С. о. т. или в случае функция… …   Математическая энциклопедия

  • Устранимая особая точка — Изолированная особая точка называется устранимой особой точкой функций , голоморфной в некоторой проколотой окрестности этой точки, если существует конечный предел , и можно так доопределить функцию в этой точке значением её предела , чтобы… …   Википедия

  • Существенно особая точка — Изолированная особая точка функции , голоморфной в некоторой проколотой окрестности этой точки, называется существенно особой, если предел не существует. Содержание 1 …   Википедия

  • Существенно особая точка —         аналитической функции, точка z0 комплексной плоскости, в которой не существует ни конечного, ни бесконечного предела при z → z0 для функции, однозначной и аналитической в некоторой окрестности этой точки (см. Аналитические функции).… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»