СУЩЕСТВЕННО ОСОБАЯ ТОЧКА

СУЩЕСТВЕННО ОСОБАЯ ТОЧКА

изолированная особая точка а однозначного характера аналитич. ции f(z) комплексного переменного z, для к-рой не существует никакого, конечного или бесконечного, предела В достаточно малой проколотой окрестности С. о. т. или в случае функция f(z)разлагается в ряд Лорана


или соответственно


причем в главной части этих рядов имеется бесконечно много отличных от нуля коэффициентов с k с отрицательными индексами k.
Сохоцкого теорема показывает, что любое комплексное значение wиз расширенной комплексной плоскости является предельным для функции f(z) в любой сколь угодно малой окрестности С. о. т. а. Согласно Пикара теореме, любое конечное комплексное значение за исключением, быть может, одного, даже принимается функцией f(z), и притом бесконечно часто, в любой окрестности С. о. т. а. Теорему Сохоцкого иначе выражают, говоря, что предельное множество С (а; f) функции f(z) в С. о. т. а совпадает со всей расширенной плоскостью Для регулярных точек и полюсов это множество, напротив, вырожденное, т. е. сводится к одной точке Поэтому в более общем смысле существенно особой точкой аналитпч. функции f(z) наз. всякая такая особая точка а(не обязательно изолированная), в к-рой не существует конечного или бесконечного предела или, иначе говоря, в к-рой предельное множество С(а; f) невырожденное. Теоремы Сохоцкого и Пикара для таких С. о. т., не являющихся изолированными точками множества всех особых точек, доказаны лишь при нек-рых дополнительных предположениях. Напр., эти теоремы остаются в силе для изолированной точки амножества С. о. т., в частности для предельной точки аполюсов мероморфной функции.
Точка а=1, . . ., а n )комплексного пространства наз. точкой мероморфности аналитич. ции f(z) многих комплексных переменных z=(zl, ... , zn), если f(z) есть мероморфная функция в нек-рой окрестности Uточки а, т. е. если f(z) пред-ставима в Uв виде отношения двух голоморфных функций f(z)=p(z)/q(z), Существенно особыми точками аналитич. ции f(z) многих комплексных переменных наз. особые точки афункции f(z), не являющиеся точками мероморфности. При этом невырожденность предельного множества . (а; f) перестает быть характеристическим свойством С. о. т.

Лит.:[1] Маркушевич А. И., Теория аналитических функций, 2 изд., т. 1, М., 1967; [2]Фукс Б. А., Введение в теорию аналитич. ций многих комплексных переменных, М., 1962.
Е. Д. Соломенцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "СУЩЕСТВЕННО ОСОБАЯ ТОЧКА" в других словарях:

  • Существенно особая точка — Изолированная особая точка функции , голоморфной в некоторой проколотой окрестности этой точки, называется существенно особой, если предел не существует. Содержание 1 …   Википедия

  • Существенно особая точка —         аналитической функции, точка z0 комплексной плоскости, в которой не существует ни конечного, ни бесконечного предела при z → z0 для функции, однозначной и аналитической в некоторой окрестности этой точки (см. Аналитические функции).… …   Большая советская энциклопедия

  • Особая точка —         в математике.          1) Особая точка кривой, заданной уравнением F (x, у) = 0, точка М0(х0, y0), в которой обе частные производные функции F (x, у) обращаются в нуль:                   Если при этом не все вторые частные производные… …   Большая советская энциклопедия

  • ОСОБАЯ ТОЧКА — 1) О. т. аналитической функции f(z) препятствие для аналитического продолжения элемента функции f(z) комплексного переменного zвдоль какого либо пути на плоскости этого переменного. Пусть аналитическая функция f(z) определена некоторым… …   Математическая энциклопедия

  • ОСОБАЯ ТОЧКА — аналитической функции точка, в к рой нарушаются условия аналитичности. Если аналитическаяфункция f(z )задана в нек рой окрестности точки z0 всюду …   Физическая энциклопедия

  • Изолированная особая точка — точка, в некоторой проколотой окрестности которой функция однозначна и аналитична, а в самой точке либо не задана, либо не дифференцируема. Классификация Если особая точка для , то, будучи аналитической в некоторой проколотой окрестности этой… …   Википедия

  • Устранимая особая точка — Изолированная особая точка называется устранимой особой точкой функций , голоморфной в некоторой проколотой окрестности этой точки, если существует конечный предел , и можно так доопределить функцию в этой точке значением её предела , чтобы… …   Википедия

  • ИЗОЛИРОВАННАЯ ОСОБАЯ ТОЧКА — для элемента аналитической функции f(z) точка акомплексной плоскости z, относительно к рой выполняются условия: 1) этот элемент функции f(z)не допускает аналитического продолжения по какому либо пути в точку я; 2) существует такое число R>0,… …   Математическая энциклопедия

  • РЕГУЛЯРНАЯ ОСОБАЯ ТОЧКА — понятие теории обыкновенных линейных дифференциальных уравнений с комплексным независимым переменным. Точка наз. Р. о. т. уравнения (1) или системы (2) с аналитич. оэффициентами, если а изолированная особенность коэффициентов и все решения… …   Математическая энциклопедия

  • ПОЛИКРИТИЧЕСКАЯ ТОЧКА — (мультикритическая точка) особая точка на диаграмме состояния физ. системы, допускающей существование нескольких упорядоченных фаз. Разл. виды упорядочения в этих фазах (конфигурационное, ориентационное, магнитное, сверхпроводящее и др.; см.… …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»