ФУНДАМЕНТАЛЬНЫЙ КЛАСС

ФУНДАМЕНТАЛЬНЫЙ КЛАСС

-1) Ф. к. ( п -1)-связкого (т. е. такого, что при топологич. пространства X - элемент r п группы Соответствующий при изоморфизме в к-рый вырождается формула универсальных коэффициентов


гомоморфизму h-1, обратному к гомоморфизму Гуревича (являющемуся по теореме Гуревича (см. Гомотопическая группа )изоморфизмом). Если Xявляется клеточным разбиением (клеточным пространством), то Ф. к. rn совпадает с первым препятствием к построению сечения Серра расслоения к-рое лежит в а также с первым препятствием к гомотопии тождественного отобрсчжения постоянному отображению. В случае, когда ( п -1)-мерный остов клеточного разбиения Xсостоит из одной точки (на самом деле это предположение общности не ограничивает, поскольку любое (п - 1)-связное клеточное разбиение гомотопически эквивалентно клеточному разбиению без клеток положительной размерности, меньшей ге), замыкание каждой n-мерной клетки является n-мерной сферой и потому ее характернcтич. отображение определяет нек-рый элемент группы Поскольку эти клетки образуют базис группы С п(X), тем самым определена n-мерная коцепь из Эта коцепь является коциклом, класс когомологий к-рого и есть Ф. к.
2) Ф. к., ориентационный класс, связного ориентируемого n-мерного многообразия Мбез края (соответственно, с краем - образующая [М]группы Н п (М)(соответственно, группы являющейся свободной циклич. группой. Если многообразие Мтриангулируемо, то Ф. к. представляет собой класс гомологии цикла, являющегося суммой всех когерентно ориентированных n-мерных симплексов произвольной его триангуляции. Для каждого qгомоморфизм


где -произведение определяется формулой


является изоморфизмом, называемым Пуанкаре двойственностью (если многообразие Мимеет край то О Ф. к. говорят также и для неориентируемых (но связных) многообразий . без края; в этом случае под ним понимается единственный отличный от нуля элемент группы (если многообразие имеет край то группы В этом случае двойственность Пуанкаре также имеет место.

Лит.:[1] Фукс Д. Б., Фоменко А. Т., Гутенмахер В. Л., Гомотопическая топология, 2 изд., М., 1969; [2] Мошер Р. Э., Тангора М. К., Когомологические операции и их приложения в теории гомотопий, пер. с англ., М., 1970; [3] Xьюзмоллер Д., Расслоенные пространства, пер. с англ., М., 1970; [4] Спеньер Э., Алгебраическая топология, пер. с англ., М., 1971; [5] Дольд А., Лекции по алгебраической топологии, пер. с англ., М., 1976.
С. Н. Малыгин, М. М. Постников.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "ФУНДАМЕНТАЛЬНЫЙ КЛАСС" в других словарях:

  • Фундаментальный класс — Фундаментальным классом называется гомологический класс ориентированного многообразия, который соответствует «целому многообразию». Интуитивно фундаментальный класс можно себе представить как сумму симплексов максимальной размерности подходящей… …   Википедия

  • ФУНДАМЕНТАЛЬНЫЙ ЦИКЛ — n мерного многообразия цикл, задающий фундаментальный класс этого многообразия. Лит.:[1] Дольд А., Лекции по алгебраической топологии, пер. с англ., М., 1976; [2] Спеньер Э., Алгебраическая топология, пер. с англ., М., 1971; [3] Милнор Дж.,… …   Математическая энциклопедия

  • ФУНДАМЕНТАЛЬНЫЙ КОЦИКЛ — клеточного пространства Xтакого, что (n 1) остов Х n 1 является точкой х 0, коцепь из значение к рой на клетке есть элемент p п( Х, x0), соответствующий замыканию Класс когомологий Ф. к. является фундаментальным классом пространства X. А. В.… …   Математическая энциклопедия

  • ГОМОТОПИЧЕСКИЙ ТИП — класс гомотопически эквивалентных топологич. пространств. Отображения и наз. взаимно обратными гомотопическими эквивалентностями, если и Если выполнено только первое из этих соотношений, то gназ. гомотопически мономорфным отображением, а f… …   Математическая энциклопедия

  • ЧЖЭНЯ ЧИСЛО — характеристическое число квазикомплексных многообразий. Пусть произвольный характеристич. класс. Для замкнутого квазикомплексного многообразия М 2n целое число наз. числом Чжэня многообразия М 2n, соответствующим классу х, здесь фундаментальный… …   Математическая энциклопедия

  • ШТИФEЛЯ ЧИСЛО — характеристическое число замкнутого многообразия, принимающее значения вычетов по модулю 2. Пусть произвольный стабильный характеристич. класс, М замкнутое многообразие. Вычет по модулю 2, определяемый равенством наз. числом Штифеля (или Штифеля… …   Математическая энциклопедия

  • ОРИЕНТАЦИЯ — формализация и далеко идущее обобщение понятия направления обхода. Определяется О. нек рых специальных классов пространств ( многообразий, векторных расслоений, Пуанкаре комплексов и т. д.). Современный взгляд на О. дается в рамках обобщенных… …   Математическая энциклопедия

  • Гомология (топология) — У этого термина существуют и другие значения, см. Гомология. Гомологии  одно из основных понятий алгебраической топологии. Даёт возможность строить алгебраический объект (группу или кольцо) который является топологическим инвариантом… …   Википедия

  • Ориентация — У этого термина существуют и другие значения, см. Ориентация (значения). Ориентация, в классическом случае  выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле. Каждая система задает… …   Википедия

  • КАТЕГОРИЯ — (category) 1. Класс или совокупность понятий. 2. (Философия) фундаментальный класс или вид (например, 10 классов режимов бытия у Аристотеля). 3. (Мн.ч.) априорные способы внимания у Канта причинность , субстанция , придающие форму всем нашим… …   Большой толковый социологический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»