ЛОКАЛЬНАЯ СТРУКТУРА ТРАЕКТОРИЙ

ЛОКАЛЬНАЯ СТРУКТУРА ТРАЕКТОРИЙ

квадратичного дифференциала - описание поведения траекторий квадратичного дифференциала на ориентированной римановой поверхности в окрестности любой точки этой поверхности. Пусть R - ориентированная риманова поверхность, Q(z)dz2 - квадратичный дифференциал на R; пусть С - множество всех нулей и простых полюсов Q(z)dz2,a H - множество всех полюсов Q(z)dz2 порядка Траектории Q(z)dz2 образуют регулярное семейство кривых на При нек-ром расширении понятия регулярного семейства кривых это остается верным и на Поведение траекторий в окрестностях точек множества Нявляется значительно более сложным. Полное описание Л. с. т. приводится ниже.

1) Для любой точки существуют окрестность Nточки Р на Л и гомеоморфное отображение Nна круг такие, что максимальная открытая дуга каждой траектории из Nпереходит в отрезок, на к-ром vпостоянно. Следовательно, через каждую точку из проходит траектория дифференциала Q(z)dz2, являющаяся либо открытой дугой, либо жордановой кривой на R.

2) Для любой точки _ порядка m (m>0, если Р- нуль, и m=-1, если Р - простой полюс) существуют окрестность Nточки Рна Rи гомеоморфное отображение Nна круг |w|<1 такие, что максимальная дуга каждой траектории из Nпереходит в открытую дугу, на к-рой постоянна. Существуют m+2 траекторий с концами в Р и с предельными касательными направлениями, составляющими друг с другом равные углы величины

3) Пусть __ - полюс порядка m>2. Если нек-рая траектория имеет конец в Р, то она стремится к Рпо одному из m-2 направлений, расположенных под равными углами Существует окрестность Nточки Рна Rсо следующими свойствами: (1) каждая траектория, проходящая через нек-рую точку окрестности N, в каждом из направлений либо стремится к Р, либо выходит из N;(2) существует окрестность N* точки Р, содержащаяся в Nи такая, что каждая траектория, проходящая через нек-рую точку из N*, хотя бы в одном направлении стремится к Р, оставаясь в N*; (3) если нек-рая траектория целиком лежит в Nи поэтому в обоих направлениях стремится к Р, то касательная к этой траектории при приближении к Рв соответствующем направлении стремится к одному из двух смежных предельных положений. Жорданова кривая, полученная присоединением к этой траектории точки Р, ограничивает область D, содержащую точки угла, образованного двумя соседними предельными касательными. Касательная к любой траектории, имеющей общие точки с D, стремится при приближении к Рв двух направлениях соответственно к этим смежным предельным положениям. Область Dотображается с помощью надлежащей ветви функции


на полуплоскость ( с - действительное число); (4) для каждой пары смежных предельных положений существует траектория, обладающая свойствами, описанными в (3).

4) Пусть - полюс 2-го порядка и z - локальный параметр, в терминах к-рого Р представляется точкой z=0. Пусть имеет (при нек-ром выборе ветви корня) следующее разложение в окрестности точки z=0:

где а, b - действительные, b1 ,b2, . . . - комплексные постоянные. Строение образов траекторий дифференциала Q(z)dz2 в плоскости z определяется тем, какой из следующих трех случаев имеет место.

Случай I: Для достаточно малого a>0 образ каждой траектории, пересекающей круг |z|<a, в одном направлении стремится к z=0, а в другом - выходит из круга |z|<a. И модуль, и аргумент z изменяются монотонно на образе траектории в круге |z|<a. Каждый образ траектории закручивается около точки z=0 и ведет себя асимптотически, как логариф-мич. спираль.

Случай II: Для достаточно малого a>0 образ каждой траектории, пересекающей круг |z|<a, в одном направлении стремится к z=0, а в другом - выходит из круга |z|<a. Модуль z изменяется монотонно иа образе траектории в круге |z|<a. Разные образы траекторий имеют разные предельные направления в точке z=0.

Случай III: Для каждого e>0 можно найти такое число a(e)>0, что при 0<a<a(e) образ траектории, пересекающей окружность |zl=a, представляет собой жорданову кривую, лежащую в круговом кольце

Лит.:[1] Дженкинс Дж., Однолистные функции и конформные отображения, пер. с англ., М., 1962.

Г. В. Кузьмина.



Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "ЛОКАЛЬНАЯ СТРУКТУРА ТРАЕКТОРИЙ" в других словарях:

  • КВАДРАТИЧНЫЙ ДИФФЕРЕНЦИАЛ — на римановой поверхности R правило, которое каждому локальному параметру z, отображающему параметрич. окрестность в замкнутую комплексную плоскость ставит в соответствие функцию Qz : такую, что для всяких локальных параметров z1 : и z2 :с… …   Математическая энциклопедия

  • ДИФФЕРЕНЦИАЛ НА РИМАНОВОИ ПОВЕРХНОСТИ — дифференциальная форма на римановой поверхности S, инвариантная относительно конформного преобразования локального униформизирующего параметра z=x+iy. Чаще всего встречаются дифференциалы (д.) первого порядка это дифференциальные формы… …   Математическая энциклопедия

  • АВТОНОМНАЯ СИСТЕМА — обыкновенных дифференциальных уравнений система обыкновенных дифференциальных уравнений, в к рую не входит явно независимое переменное t(время). Общий вид А. с. 1 го порядка в нормальной форме: или, в векторной записи, Неавтономная система… …   Математическая энциклопедия

  • ХАОС ДИНАМИЧЕСКИЙ — (хаос детерминированный) нерегулярное, апериодическое изменение состояния (движение) динамич. системы, обладающее осн. свойствами случайного процесса. Исследования свойств нелинейных динамич. систем показали, что для мн. таких систем характерно… …   Физическая энциклопедия

  • Общая теория относительности — Альберт Эйнштейн (автор общей теории относительности), 1921 год …   Википедия

  • ОТО — Альберт Эйнштейн  автор общей теории относительности (1921 год) Общая теория относительности …   Википедия

  • Бетатронные колебания — быстрые поперечные колебания, совершаемые частицей в фокусирующих магнитных полях ускорителя. Бетатронные колебания основной предмет изучения электронной оптики, раздела физики ускорителей. Содержание 1 Уравнение Хилла 2 Матричный формализм …   Википедия

  • ПЛАСТИЧНОСТИ МАТЕМАТИЧЕСКАЯ ТЕОРИЯ — теория деформируемого пластичного твердого тела, в к рой исследуются задачи, состоящие в определении полей вектора перемещений и( х, t).или вектора скоростей v(x,t), тензора деформации eij( х, t).или скоростей деформации vij(x, t).и тензора… …   Математическая энциклопедия

  • ХАББАРДА МОДЕЛЬ — одна из фундам. моделей для описания систем сильно взаимодействующих электронов в кристалле. Модель была предложена в 1963 65 Дж. Хаббардом [1 ] и получила широкое развитие в последующие годы. X. м. является осн. моделью для описания зонного… …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»