- ЛИ РЕДУКТИВНАЯ АЛГЕБРА
- конечномерная алгебра Ли над полем kхарактеристики 0, присоединенное представление к-рой вполне приводимо. Свойство редуктивности алгебры Ли равносильно любому из следующих свойств:
1) радикал алгебры Ли совпадает с центром
2) , где - полупростой идеал в ;
3) где - простые идеалы;
4) допускает точное вполне приводимое конечномерное линейное представление.
Свойство редуктивности алгеб, ры Ли сохраняется как при расширении, так и при сужении основного поля k.
Важный класс Ли р. а. над составляют компактные алгебры Ли (см. Ли компактная группа). Группу Ли, алгебра Ли к-рой редуктивна, часто наз. р е д у к т и в н о й группой Ли. Если kалгебраически замкнуто, то алгебра Ли над kявляется редуктивной тогда и только тогда, когда она изоморфна алгебре Ли нек-рой редуктивной алгебраич. группы над k.
Обобщением понятия Ли р. а. является следующее понятие. Подалгебра конечномерной алгебры Ли над kназ. редуктивной в если присоединенное представление ad: вполне приводимо. В этом случае будет Ли р. а. Если kалгебраически замкнуто, то для редуктивности подалгебры в необходимо и достаточно следующее условие: состоит из полупростых линейных преобразований.
Лит.:[1] С е р р Ж.- П., Алгебры Ли и группы Ли, пер. с англ, и франц., М., 1969. А. Л. Онищик.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.