ПРИСОЕДИНЕННОЕ ПРЕДСТАВЛЕНИЕ

ПРИСОЕДИНЕННОЕ ПРЕДСТАВЛЕНИЕ

группы Ли или алгебраической группы G - линейное представление Ad группы Gв касательном пространстве Te(G).(или в алгебре Ли группы G), сопоставляющее каждому дифференциал Ad a=d(Int a)e внутреннего автоморфизма Int a: . Если - линейная группа в пространстве V, то


Ядро Кеr Ad содержит центр группы G, а в случае, когда G связна и основное поле имеет характеристику 0, совпадает с центром. Дифференциалом П. п. группы G в точке еслужит присоединенное представление ad алгебры .

Присоединенным представлением алгебры Ли наз. линейное представление ad алгебры в модуле , действующее по формуле


где [ , ] - операция в алгебре . Ядро Кеr ad есть центр алгебры Ли . Присоединенные операторы ad x являются дифференцированиями алгебры и наз. внутренними дифференцированиями. Образ ad называется присоединенной алгеброй и является идеалом в алгебре Ли Der всех дифференцирований алгебры , причем есть пространство 1-мерных когомологий алгебры Ли , определяемых П. п. В частности, , если - полупростая алгебра Ли над полем характеристики 0.

Лит.:[1] Джекобсон Н., Алгебры Ли, пер. с англ., М., 1964; [2] Понтрягин Л. С., Непрерывные группы, 3 изд., М., 1973; [3] Серр Ж. - П., Алгебры Ля и группы Ли, пер. с англ, и франц., М., 1969; [4] Хамфри Д ж., Линейные алгебраические группы, пер. с англ., М., 1980.

А. Л. Онищик.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "ПРИСОЕДИНЕННОЕ ПРЕДСТАВЛЕНИЕ" в других словарях:

  • Присоединенное представление — Присоединённое представление группы Ли Присоединённое представление алгебры Ли …   Википедия

  • Присоединенное представление алгебры Ли — Присоединённое представление алгебры Ли называется линейное представление алгебры в модуле , действующее по формуле где …   Википедия

  • Присоединенное представление группы Ли — Присоединённое представление группы Ли G  линейное представление группы G в касательном пространстве TeG (или в алгебре Ли группы G), сопоставляющее каждому элементу дифференциал …   Википедия

  • Присоединенное представление лиевой алгебры — Присоединённое представление алгебры Ли называется линейное представление алгебры в модуле , действующее по формуле где …   Википедия

  • ЛИ РЕДУКТИВНАЯ АЛГЕБРА — конечномерная алгебра Ли над полем kхарактеристики 0, присоединенное представление к рой вполне приводимо. Свойство редуктивности алгебры Ли равносильно любому из следующих свойств: 1) радикал алгебры Ли совпадает с центром 2) , где полупростой… …   Математическая энциклопедия

  • МАКСИМАЛЬНЫЙ ТОР — 1) М. т. линейной алгебраической группы G алгебраическая подгруппа в G, являющаяся алгебраическим тором и не содержащаяся ни в какой большей подгруппе такого типа. Пусть, далее, группа Gсвязна. Объединение всех М. т. группы Gсовпадает с… …   Математическая энциклопедия

  • УНИМОДУЛЯРНАЯ ГРУППА — топологическая группа, левоинвариантная Хаара мера на к рой правоинвариантна или, что равносильно, инвариантна относительно преобразования Группа Ли G унимодулярна тогда и только тогда, когда где Ad присоединенное представление. Для связных групп …   Математическая энциклопедия

  • ОТНОСИТЕЛЬНАЯ СИСТЕМА КОРНЕЙ — связной редуктивной алгебраической группы G, определенной над полем k, система ненулевых весов присоединенного представления максимального k расщепимого тора Sгруппы G в алгебре Ли g этой группы. Сами веса наз. корнями G относительно S. О. с. к …   Математическая энциклопедия

  • ШЕВАЛЛЕ ГРУППА — линейная алгебраич. группа над нек рым полем, связанная с полупростой комплексной алгеброй Ли. Пусть Ли полупростая алгебра над ее подалгебра Картана, система корней алгебры относительно система простых корней, базис Шевалле алгебры его линейная… …   Математическая энциклопедия

  • АЛГЕБРА — часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции арифметич. действия над натуральными и положительными рациональными числами встречаются в самых ранних математич. текстах,… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»