КОНЕЧНОМЕРНАЯ АССОЦИАТИВНАЯ АЛГЕБРА

КОНЕЧНОМЕРНАЯ АССОЦИАТИВНАЯ АЛГЕБРА

- ассоциативное кольцо А, являющееся одновременно конечномерным векторным пространством над полем F, в к-ром выполняется следующее условие

для всех и Размерность пространства Анад полем Fназ. размерностью алгебры Анад F. Принято также говорить, что алгебра Аявляется n-мерной. Всякая n-мерная ассоциативная алгебра Анад полем Fимеет точное представление матрицами порядка n+1 над F, т. е. существует изоморфизм алгебры Ана нек-рую подалгебру алгебры всех квадратных матриц порядка над F. Если, кроме того, алгебра Асодержит единицу, то она имеет точное представление матрицами порядка пнад F.

Пусть е г, . .. , е п- некоторый базис векторного пространства Анад F(он наз. также базисом алгебры А)и

Элементы поля Fназ. структурными константами алгебры Ав данном базисе. Они образуют тензор третьего ранга в пространстве А.

Основные теоремы о К. а. а. Радикал: Джекобсона К. а. а. нильпотентен и, если основное поле сепарабельно, отщепляется полупрямым слагаемым (см. Веддерберна- Мальцева теорема). Полупростая К. а. а. над полем разлагается в прямую сумму магричных алгебр над телами. Если основное поле Fалгебраически замкнуто, то полупростая К. а. а. распадается в прямую сумму матричных алгебр над F. Простые конечномерные алгебры исчерпываются полными матричными алгебрами над телами (теорема Веддерберна). В частности, К. а. а. без делителей нуля оказывается телом. Над полем действительных чисел К. а. а. с делением (т. е. тела) исчерпываются следующими примерами: поле действительных чисел, поле комплексных чисел, тело кватернионов (теорема Фробениуса).

Многие из упомянутых структурных свойств К. а. а. имеют место и в более широких классах нётеровых и артиновых колец (см., напр., Веддерберна- Артина. теорема).

Лит.:[1] Ван дер Варден Б. Л., Алгебра, пер. с нем., М., 1976; [2] Аlbert A. A., Structure of algebras, N. Y., 1939.

В. <Н. <Латышев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "КОНЕЧНОМЕРНАЯ АССОЦИАТИВНАЯ АЛГЕБРА" в других словарях:

  • Алгебра Хопфа — Алгебра Хопфа  алгебра, являющаяся унитарной ассоциативной коалгеброй и, таким образом, биалгеброй c антигомоморфизмом специального вида. Названа в честь Х. Хопфа. Алгебры Хопфа встречаются в алгебраической топологии, где они возникли в… …   Википедия

  • КЛИФФОРДА АЛГЕБРА — конечномерная ассоциативная алгебра над коммутативным кольцом, впервые рассмотренная У. Клиффордом (W. Clifford) в 1876. Пусть К коммутативное кольцо с единицей, Е свободный K модуль, Q квадратичная форма на Е. К. а. квадратичной формы Q(или пары …   Математическая энциклопедия

  • АЛГЕБРА С ДЕЛЕНИЕМ — алгебра Анад полем F, для любых элементов и bк рой уравнения разрешимы в А. Ассоциативная А. с д., рассматриваемая как кольцо, является телом, а ее центр С полем и Если то А. с д. Аназ. центральной А. с д. Конечномерные центральные ассоциативные… …   Математическая энциклопедия

  • ЛИ ГРАДУИРОВАННАЯ АЛГЕБРА — алгебра Ли над полем К, градуированная при помощи нек рой абелевой группы А, т. е. разложенная в прямую сумму подпространств , таким образом, что Если А упорядоченная группа, то для каждой фильтрованной алгебры Ли ассоциированная с ней… …   Математическая энциклопедия

  • ЙОРДАНОВА АЛГЕБРА — алгебра, в к рой справедливы тождества 4 Такие алгебры впервые возникли в работе П. Йордана [1], посвященной аксиоматизации основ квантовой механики (см. также [2]), а затем нашли применения в алгебре, анализе и геометрии. Пусть А ассоциативная… …   Математическая энциклопедия

  • СЕПАРАБЕЛЬНАЯ АЛГЕБРА — конечномерная полупростая ассоциативная алгебра Анад полем k, остающаяся полупростой при любом расширении Kполя k(т. е. алгебра полупроста для любого поля ). Алгебра Асепарабельна тогда и только тогда, когда центры простых компонент этой алгебры… …   Математическая энциклопедия

  • ЛИ АЛГЕБРА — лиева алгебра, унитарный k модуль Lнад коммутативным кольцом k с единицей, к рый снабжен билинейным отображением прямого произведения в L, обладающим следующими двумя свойствами: 1) [ х, х] = 0 (откуда вытекает антикоммутативность 2) ( х,[ у,… …   Математическая энциклопедия

  • ЦЕНТРАЛЬНАЯ ПРОСТАЯ АЛГЕБРА — простая ассоциативная алгебра с единицей, являющаяся центральной алгеброй. Всякая конечномерная Ц …   Математическая энциклопедия

  • ЛИ p-АЛГЕБРА — ограниченная алгебра Ли, алгебра Lнад полем kхарактеристики р>0 (или, более общо, над кольцом простой характеристики р>0), снабженная р отображением таким, что выполняются следующие соотношения: Здесь внутреннее дифференцирование алгебры L …   Математическая энциклопедия

  • РАДИКАЛЫ — колец и алгебр понятие, впервые возникшее в классической структурной теории конечномерных алгебр в нач. 20 в. Под Р. первоначально понимался наибольший нильпотентный идеал конечномерной ассоциативной алгебры. Алгебры с нулевым Р. (называемые… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»