КАРАТЕОДОРИ КЛАСС

КАРАТЕОДОРИ КЛАСС

- класс Сфункций

регулярных в круге |z|<1 и имеющих в нем положительную действительную часть. Класс назван по имени К. Каратеодори, определившего точное множество значений системы коэффициентов{c1, с2, . .., с п}, на классе С(см. [1], [2]).

Теорема Рисса - Герглотца. Для того чтобы функция f(z) принадлежала классу С, необходимо и достаточно, чтобы она допускала представление интегралом Стилтьеса

где m(t) - функция, неубывающая на отрезке [-p,p]и такая, что m(p)-m( -p)=1.

С помощью этого представления легко выводятся интегральные параметрич. представления для классов функций, выпуклых и однолистных в круге, звездообразных и однолистных в круге и др.

Теорема Каратеодори - Теплица. Множество значений системы {с 1, с 2,..., с п}, на классе Сесть замкнутое выпуклое ограниченное множество К п точек n-мерного комплексного евклидова пространства, в к-рых определители

либо все положительны, либо положительны до какого-то номера, начиная с к-рого все равны нулю. В последнем случае получается поверхность П n тела К п. Каждой точке П n отвечает только одна функция класса Си она имеет вид

где

при jk, k, j = 1, . . ., N.

Множество значений коэффициента с п, п=1,2, ..., на классе Сесть круг окружности |с n| = 2 соответствуют только функции

Множество значений f(z0) (z0 фиксировано, |z0|<l) на классе Сесть круг, диаметром к-рого является отрезок границе этого круга соответствуют только функции

Рассматривались множества значений систем функционалов и более общего вида (см. [6]). Для класса Сполучены вариационные формулы, с помощью к-рых показано, что ряд экстремальных задач в классе Срешается функциями fN(z), (см. [В]).

Основной подкласс С - класс С r функций имеющих действительные коэффициенты с n, n=1, 2, .... Для того чтобы функция f(z)принадлежала классу С r, необходимо и достаточно, чтобы она допускала представление

где m(t)- функция, неубывающая на [0, 2p], m(2p)- -m(0)=l. С помощью этого представления решаются многие экстремальные задачи на классе С г.

Лит.:[1] Саratheоdоrу С, "Math. Ann.", 1907, Bd 64, S. 95-115; [2] его же, "Rend. Circolo mat. Palermo", 1911, v. 32, p. 193-217; [3] Tоeplitz О., там же, р. 191 - 92; [4] Ricsz P., "Ann. scient. Ecole norm, super.", 1911, t. 28, p. 33-62; [5] Herglotz G., "Ber. Verhandl. Sachsisch. Akad. Wiss. Leipzig. Math.-naturwiss. Kl.", 1911, Bd 63, S. 501 - 11; [6] Голузин Г. М., Геометрическая теория функций комплексного переменного, 2 изд., М., 1966.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "КАРАТЕОДОРИ КЛАСС" в других словарях:

  • ОДНОЛИСТНАЯ ФУНКЦИЯ — функция f, регулярная или мероморфная в области Врасширенной комплексной плоскости п такая, что для всяких zl , выполняется соотношение то есть f отображает В в взаимно однозначно. При этом обратная функция также однолистна. Обобщением О. ф.… …   Математическая энциклопедия

  • ПАРАМЕТРИЧЕСКИХ ИНТЕГРАЛЬНЫХ ПРЕДСТАВЛЕНИЙ МЕТОД — метод в геометрич. теории функций комплексного переменного, использующий для решения экстремальных задач в классах функций представление этих классов с помощью интегралов, зависящих от параметров. К таким классам относятся Каратеодори класс,… …   Математическая энциклопедия

  • ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… …   Энциклопедия Кольера

  • ЛАНДАУ ТЕОРЕМЫ — теоремы для регулярных в круге функций, устанавливающие нек рые связи между геометрич. свойствами производимого этими функциями конформного отображения и начальными коэффициентами представляющих их степенных рядов. В 1904 Э. Ландау показал [1],… …   Математическая энциклопедия

  • ГРАНИЧНЫЕ ЭЛЕМЕНТЫ — области, простые концы области, элементы области Вкомплексной плоскости, определяемые следующим образом. Пусть В односвязная область расширенной комплексной плоскости, граница области В. Сечением с области Вназ. всякая простая замкнутая в… …   Математическая энциклопедия

  • Греки в Османской империи — Этнический состав Османской империи в 1911 Греки в Османской империи (греч …   Википедия

  • Италия — I Италия (Italia)         Итальянская Республика (La Repubblica Italiana).          I. Общие сведения          И. государство на юге Европы в центральной части Средиземноморья. Берега И. омываются морями: на З. Лигурийским и Тирренским, на Ю.… …   Большая советская энциклопедия

  • Италия — I Италия (Italia)         Итальянская Республика (La Repubblica Italiana).          I. Общие сведения          И. государство на юге Европы в центральной части Средиземноморья. Берега И. омываются морями: на З. Лигурийским и Тирренским, на Ю.… …   Большая советская энциклопедия

  • КОНФОРМНОЕ ОТОБРАЖЕНИЕ — непрерывное отображение, сохраняющее форму бесконечно малых фигур. Основные понятия. Непрерывное отображение w=f(z)области G n мерного евклидова пространства в n мерное евклидово пространство наз. конформным в точке если оно в этой точке обладает …   Математическая энциклопедия

  • ВНЕШНЯЯ МЕРА — неотрицательная функция множества, обозначаемая , заданная на счетно аддитивном классе множеств, содержащем вместе с множеством любое его подмножество и обладающая свойствами: монотонности, т. е. счетной полуаддитивности, т. е. , где пустое… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»