ЖОРДАНА ПРИЗНАК

ЖОРДАНА ПРИЗНАК

сходимости рядов Фурье: если 2p-периодическая функция f(x)имеет ограниченную вариацию на отрезке [ а, b], то ее ряд Фурье сходится в каждой точке к числу если при этом функция f(х)непрерывна на отрезке [ а, b], то ее ряд Фурье сходится к ней равномерно на всяком отрезке [ а', b'], строго внутреннем к [а, b]. Ж. п. установлен К. Жорданом [1]; он обобщает Дирихле теорему о сходимости рядов Фурье кусочно монотонных функций.

Лит.:[1] Jordan С, "С. г. Acad. sci.", 1881, t. 92, p. 228-30; [2] Бари Н. К., Тригонометрические ряды, М., 1961, с. 121.

Б. И. Голубое.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужна курсовая?

Смотреть что такое "ЖОРДАНА ПРИЗНАК" в других словарях:

  • Жордана признак — Признак Жордана признак сходимости рядов Фурье: если 2π периодическая функция f(x) имеет ограниченную вариацию на отрезке , то ее ряд Фурье сходится в каждой точке к числу ; если при этом функция f(x) непрерывна на отрезке , то ее ряд Фурье… …   Википедия

  • Признак Жордана — признак сходимости рядов Фурье: если периодическая функция имеет ограниченную вариацию на отрезке , то её ряд Фурье сходится в каждой точке к числу ; если при этом функция непрерывна на отрезке …   Википедия

  • Признак Дирихле — Признак Дирихле  теорема, указывающая достаточные условия сходимости несобственных интегралов и суммируемости бесконечных рядов. Названа в честь немецкого математика Лежёна Дирихле. Содержание …   Википедия

  • Признак Дини — Признак Дини  признак поточечной сходимости ряда Фурье. Несмотря на то, что ряд Фурье функции из сходится к ней в смысле нормы, он вовсе не обязан сходиться к ней поточечно (даже в случае непрерывной функции). Тем не менее, при некоторых… …   Википедия

  • Признак сравнения — Признак сравнения  утверждение об одновременности расходимости или сходимости двух рядов, основанный на сравнении членов этих рядов. Содержание 1 Формулировка 2 Доказательство …   Википедия

  • Признак Лобачевского — признак сходимости числового ряда, предложенный Лобачевским между 1834 и 1836. Пусть есть убывающая последовательность положительных чисел, тогда ряд сходится или расходится одновременно с рядом …   Википедия

  • Признак Раабе — (признак Раабе Дюамеля) признак сходимости знакоположительных числовых рядов, установленный Йозефом Людвигом Раабе (Joseph Ludwig Raabe) и независимо Жан Мари Дюамелем. Содержание 1 Формулировка 2 Формул …   Википедия

  • Признак Бертрана — признак сходимости числовых рядов с положительными членами, установленный Жозефом Бертраном. Содержание 1 Формулировка 2 Формулировка в предельной форме …   Википедия

  • Признак Гаусса — общий признак сходимости числовых рядов с положительными членами, установленный в 1812 году Карлом Гауссом, при исследовании сходимости гипергеометрического ряда. Формулировка Пусть дан ряд и ограниченная числовая последовательность . Тогда если… …   Википедия

  • Признак Ермакова — признак сходимости числовых рядов с положительными членами, установленный Василием Ермаковым. Его специфика заключается в том, что он превосходит все прочие признаки своей чувствительностью . Эта работа опубликована в статьях: «Общая теория… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»