Канторовское множество

Канторовское множество

Ка́нторово мно́жество есть один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером «плохого множества» в математическом анализе. Описано в 1883 году Г. Кантором.

Содержание

Определения

Классическое построение

Из единичного отрезка C0 = [0,1] удалим среднюю треть, т. е. интервал (1 / 3,2 / 3) Оставшееся точечное множество обозначим через C1. Множество C_1=[0,1/3]\cup[2/3,1] состоит из двух отрезков; удалим теперь из каждого отрезка его среднюю треть, и оставшееся множество обозначим через C2. Повторив эту процедуру опять, удаляя средние трети у всех четырёх отрезков, получаем C3. Дальше таким же образом получаем C_4,\ C_5,\ C_6,\cdots. Обозначим через C пересечение всех Ci. Множество C называется Канторовым множеством.

Cantor set, in seven iterations
Множества C_0,\ C_1,\ C_2,\ C_3,\ C_4,\ C_5,\ C_6

С помощью троичной записи

Канторово множество может быть также определено как множество чисел от нуля до единицы, которые можно представить в троичной записи с помощью только нулей и двоек. При этом следует отметить, что число принадлежит Канторовому множеству, если у него есть одно такое представление, например 0,1_3\in C так как 0,13 = 0,0(2)3.

Как аттрактор

Рассмотрим все последовательности точек {xn} такие, что для любого n,

xn + 1 = xn / 3 или xn + 1 − 1 = (xn − 1) / 3.

Тогда множество пределов всех таких последовательностей является Канторовым множеством.

Свойства

См. также


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "Канторовское множество" в других словарях:

  • Нечёткое множество — Эту страницу предлагается объединить с Теория нечётких множеств …   Википедия

  • Нечеткое множество — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • Пушистое множество — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • Нечеткие множества — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • Нечёткие множества — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • Пушистые множества — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • МАТЕМАТИКА — наука, или группа наук, о познаваемых разумом многообразиях и структурах, специально – о математических множествах и величинах; напр., элементарная математика – наука о числовых величинах (арифметика) и величинах пространственных (геометрия) и о… …   Философская энциклопедия

  • КОМБИНАТОРНАЯ ЛОГИКА — см. Логика комбинаторная. Философская Энциклопедия. В 5 х т. М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960 1970. КОМБИНАТОРНАЯ ЛОГИКА …   Философская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»