- АТФ
-
Аденозинтрифосфат Общие Сокращения АТФ, ATP Эмпирическая формула C10H16N5O13P3 Молярная масса 507.19 г/моль Химические свойства Растворимость в воде растворимость в воде (20 °C) - 5 г/100 мл Классификация номер CAS 56-65-5
Аденозинтрифосфа́т (сокр. АТФ, англ. АТР) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ был открыт в 1929 году Карлом Ломанном[1], а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке[2].Содержание
Химические свойства
Структура аденозинтрифосфорной кислотыСистематическое наименование АТФ:
- 9-β-D-рибофуранозиладенин-5'-трифосфат, или
- 9-β-D-рибофуранозил-6-амино-пурин-5'-трифосфат.
Химически АТФ представляет собой трифосфорный эфир аденозина, который является производным аденина и рибозы.
Пуриновое азотистое основание — аденин — соединяется β-N-гликозидной связью с 1'-углеродом рибозы. К 5'-углероду рибозы последовательно присоединяются три молекулы фосфорной кислоты, обозначаемые соответственно буквами: α, β и γ.
АТФ относится к так называемым макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых происходит освобождение значительного количества энергии. Гидролиз макроэргических связей молекулы АТФ, сопровождаемый отщеплением 1 или 2 остатков фосфорной кислоты, приводит к выделению, по различным данным, от 40 до 60 кДж/моль.
- АТФ + H2O → АДФ + H3PO4 + энергия
- АТФ + H2O → АМФ + H4P2O7 + энергия
Высвобожденная энергия используется в разнообразных процессах, протекающих с затратой энергии.
Роль в организме
Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Все это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.
Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:
- Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.
- Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.
- АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.
- Также известна роль АТФ в качестве медиатора в синапсах
Пути синтеза
В организме АТФ синтезируется из АДФ, используя энергию окисляющихся веществ:
- АДФ + H3PO4 + энергия → АТФ + H2O.
Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование. Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой. Субстратное фосфорилирование АТФ не требует участия мембранных ферментов, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений.
Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена.
В организме АТФ является одним из самых часто обновляемых веществ, так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.
Примечания
Ссылки
- Biochemistry Vol 1 3rd ed.. — Wiley: Hoboken, NJ.. — ISBN 978-0-471-19350-0
- Molecular Cell Biology, 5th ed.. — New York: WH Freeman, 2004. — ISBN 9780716743668
См. также
Типы нуклеиновых кислот Азотистые основания Пурины (Аденин, Гуанин) | Пиримидины (Урацил, Тимин, Цитозин) Нуклеозиды Аденозин | Гуанозин | Уридин | Тимидин | Цитидин Нуклеотиды монофосфаты (АМФ, ГМФ, UMP, ЦМФ) | дифосфаты (АДФ, ГДФ, УДФ, ЦДФ) | трифосфаты (АТФ, ГТФ, УТФ, ЦТФ) | циклические (цАМФ, цГМФ, cADPR) Рибонуклеиновые кислоты РНК | мРНК | тРНК | рРНК | антисмысловые РНК | микроРНК | некодирующие РНК | piwi-interacting RNA | малые интерферирующие РНК | малые ядерные РНК | малые ядрышковые РНК | тмРНК Дезоксирибонуклеиновые кислоты ДНК | кДНК | Геном | msDNA | Митохондриальная ДНК Аналоги нуклеиновых кислот GNA | LNA | ПНК | TNA | Морфолино Типы векторов en:phagemid | Плазмиды | Фаг лямбда | en:cosmid | en:P1 phage | en:fosmid | BAC | YAC | HAC
Wikimedia Foundation. 2010.