Арифметическое кодирование


Арифметическое кодирование

Арифметическое кодирование — один из алгоритмов энтропийного сжатия.

В отличие от алгоритма Хаффмана, не имеет жесткого постоянного соответствия входных символов — группам бит выходного потока. Это даёт алгоритму большую гибкость в представлении дробных частот встречаемости символов.

Как правило, превосходит алгоритм Хаффмана по эффективности сжатия, позволяет сжимать данные с энтропией, меньшей 1 бита на кодируемый символ, но некоторые версии имеют патентные ограничения от компании IBM.[1]

Содержание

Характеристики

Обеспечивает почти оптимальную степень сжатия с точки зрения энтропийной оценки кодирования Шеннона. На каждый символ требуется почти H бит, где H — информационная энтропия источника.

В отличие от алгоритма Хаффмана, метод арифметического кодирования показывает высокую эффективность для дробных неравномерных интервалов распределения вероятностей кодируемых символов. Однако в случае равновероятного распределения символов, например для строки бит 010101…0101 длины s метод арифметического кодирования приближается к префиксному коду Хаффмана и даже может занимать на один бит больше.[1]

Принцип действия

Пусть имеется некий алфавит, а также данные о частотности использования символов (опционально). Тогда рассмотрим на координатной прямой отрезок от 0 до 1.

Назовём этот отрезок рабочим. Расположим на нём точки таким образом, что длины образованных отрезков будут равны частоте использования символа, и каждый такой отрезок будет соответствовать одному символу.

Теперь возьмём символ из потока и найдём для него отрезок среди только что сформированных, теперь отрезок для этого символа стал рабочим. Разобьём его таким же образом, как разбили отрезок от 0 до 1. Выполним эту операцию для некоторого числа последовательных символов. Затем выберем любое число из рабочего отрезка. Биты этого числа вместе с длиной его битовой записи и есть результат арифметического кодирования использованных символов потока.

Пример работы метода арифметического кодирования

Вероятностная модель

Используя метод арифметического кодирования, можно достичь почти оптимального представления для заданного набора символов и их вероятностей (согласно теории энтропийного кодирования источника Шеннона оптимальное представление будет стремиться к числу −log2P бит на каждый символ, вероятность которого P). Алгоритмы сжатия данных, использующие в своей работе метод арифметического кодирования, перед непосредственным кодированием формируют модель входных данных на основании количественных или статистических характеристик, а также, найденных в кодируемой последовательности повторений или паттернов — любой дополнительной информации, позволяющей уточнить вероятность появления символа P в процессе кодирования. Очевидно, что чем точнее определена или предсказана вероятность символа, тем выше эффективность сжатия.

Рассмотрим простейший случай статической модели для кодирования информации, поступающей с системы обработки сигнала. Типы сигналов и соответствующие им вероятности распределены следующим образом:

  • 60 % вероятность нейтрального значения сигнала или NEUTRAL.
  • 20 % вероятность положительного значения сигнала или POSITIVE.
  • 10 % вероятность отрицательного значения сигнала или NEGATIVE.
  • 10 % вероятность признака конца кодируемой последовательности или END-OF-DATA.

Появление последнего символа для декодера означает, что вся последовательность была успешно декодирована. (В качестве альтернативного подхода, но необязательно более успешно, можно использовать блочный алгоритм фиксированной длины.)

Следует также отметить, что в качестве алфавита вероятностной модели метода можно рассматривать любой набор символов, исходя из особенностей решаемой задачи. Более эвристические подходы, использующие основную схему метода арифметического кодирования, применяют динамические или адаптивные модели. Идея данных методов заключается в уточнении вероятности кодируемого символа за счёт учёта вероятности предшествующего или будущего контекста (то есть, вероятность появления кодируемого символа после определённого k-го числа символов слева или справа, где k — это порядок контекста).

Кодирование сообщения.

Декодирование сообщения

На диаграмме представлено декодирование итогового интервального значения 0.538 согласно модели в приведённом примере. Область интервала разбивается на подинтервальные области согласно вероятностным характеристикам появления соответствующих символов. Затем, очередной выбранный интервал разбивается аналогичным способом.

Предположим, что нам необходимо раскодировать сообщение методом арифметического кодирования согласно описанной выше модели. Сообщение в закодированном виде представлено дробным значением 0.538 (для простоты используется десятичное представление дроби, вместо двоичного основания). Предполагается, что закодированное сообщение содержит ровно столько знаков в рассматриваемом числе, сколько необходимо для однозначного восстановления первоначальных данных.

Начальное состояние процесса декодирования совпадает с процессом кодирования и рассматривается интервал [0,1). На основании известной вероятностной модели дробное значение 0.538 попадает в интервал [0, 0.6). Это позволяет определить первый символ, который был выбран кодировщиком, поэтому его значение выводится как первый символ декодированного сообщения.


Примечания

Ссылки


Wikimedia Foundation. 2010.

Смотреть что такое "Арифметическое кодирование" в других словарях:

  • Адаптивное арифметическое кодирование — Содержание 1 Введение 2 Алгоритм 3 Пример 4 Реализация кодера …   Википедия

  • Кодирование энтропии — кодирование словами (кодами) переменной длины, при которой длина кода символа имеет обратную зависимость от вероятности появления символа в передаваемом сообщении. Обычно энтропийные кодировщики используют для сжатия данных коды, длины которых… …   Википедия

  • Кодирование с минимальной избыточностью — Кодирование энтропии кодирование словами (кодами) переменной длины, при которой длина кода символа имеет обратную зависимость от вероятности появления символа в передаваемом сообщении. Обычно энтропийные кодировщики используют для сжатия данных… …   Википедия

  • Кодирование длин серий — (англ. Run length encoding, RLE) или Кодирование повторов  простой алгоритм сжатия данных, который оперирует сериями данных, то есть последовательностями, в которых один и тот же символ встречается несколько раз подряд. При кодировании… …   Википедия

  • Кодирование Шеннона-Фано — Алгоритм Шеннона Фано  один из первых алгоритмов сжатия, который впервые сформулировали американские учёные Шеннон и Фано. Данный метод сжатия имеет большое сходство с алгоритмом Хаффмана, который появился на несколько лет позже. Алгоритм… …   Википедия

  • Кодирование Хаффмана — Алгоритм Хаффмана (англ. Huffman) адаптивный жадный алгоритм оптимального префиксного кодирования алфавита с минимальной избыточностью. Был разработан в 1952 году доктором Массачусетского технологического института Дэвидом Хаффманом. В настоящее… …   Википедия

  • Кодирование Голомба — Коды Голомба  это семейство энтропийных кодеров, являющихся общим случаем унарного кода. Также под кодом Голомба может подразумеваться один из представителей этого семейства. Код Голомба позволяет представить последовательность символов в виде… …   Википедия

  • Дельта-кодирование — Для термина «Кодирование» см. другие значения. Дельта кодирование (англ. Delta encoding)  способ представления данных в виде разницы (дельты) между последовательными данными вместо самих данных. Пожалуй, наиболее простой пример… …   Википедия

  • Энтропийное кодирование — Для термина «Кодирование» см. другие значения. Энтропийное кодирование  кодирование последовательности значений с возможностью однозначного восстановления с целью уменьшения объёма данных (длины последовательности) с помощью усреднения… …   Википедия

  • основанное на контексте адаптивное арифметическое бинарное кодирование — (МСЭ Т Н.264). [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN context based adaptive binary arithmetic codingCABAC …   Справочник технического переводчика


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.