Психоакустика

Психоакустика

Психоаку́стика — научная дисциплина, изучающая психологические и физиологические особенности восприятия звука человеком.

В аспекте сугубо музыкальном, основными задачами психоакустики являются следующие:

  • понять, как система слухового восприятия человека расшифровывает тот или иной звуковой образ;
  • установить основные соответствия между физическими стимулами и слуховыми ощущениями;
  • выявить, какие именно параметры звукового сигнала являются наиболее значимыми для передачи семантической (смысловой) и эстетической (эмоциональной) информации.

Содержание

Предпосылки

Во многих приложениях акустики и обработки звуковых сигналов необходимо знать, что люди слышат. Звук, который образуют волны давления воздуха, может быть точно измерен современным оборудованием. Однако понять, как эти волны принимаются и отображаются в нашем головном мозге — задача не такая простая. Звук — это непрерывный аналоговый сигнал, который (в предположении, что молекулы воздуха бесконечно малы) может теоретически переносить бесконечное количество информации (так как существует бесконечное число колебаний, содержащих информацию об амплитуде и фазе).

Понимание процессов восприятия позволяет учёным и инженерам сосредоточиться на возможностях слуха и не учитывать менее важные возможности других систем. Важно также отметить, что вопрос «что человек слышит» — не только вопрос о физиологических возможностях уха, но во многом также вопрос психологии, чёткости восприятия.

Пределы восприятия звука

Человеческое ухо номинально слышит звуки в диапазоне от 16 до 20 000 Гц. Верхний предел имеет тенденцию снижаться с возрастом. Большинство взрослых людей не могут слышать звук частотой выше 16 кГц. Ухо само по себе не реагирует на частоты ниже 20 Гц, но они могут ощущаться через органы осязания.

Диапазон громкости воспринимаемых звуков огромен. Но барабанная перепонка в ухе чувствительна только к изменению давления. Уровень давления звука принято измерять в децибелах (дБ). Нижний порог слышимости определён как 0 дБ (20 микропаскаль), а определение верхнего предела слышимости относится скорее к порогу дискомфорта и далее — к нарушению слуха, контузии и т. д. Этот предел зависит от того, как долго по времени мы слушаем звук. Ухо способно переносить кратковременное повышение громкости до 120 дБ без последствий, но долговременное восприятие звуков громкостью более 80 дБ может вызвать потерю слуха.[источник не указан 233 дня]http://www.medchitalka.ru/lor_bol/1064/559/30996.html

Более тщательные исследования нижней границы слуха показали, что минимальный порог, при котором звук остаётся слышен, зависит от частоты. График этой зависимости получил название абсолютный порог слышимости. В среднем, он имеет участок наибольшей чувствительности в диапазоне от 1 кГц до 5 кГц, хотя с возрастом чувствительность понижается в диапазоне выше 2 кГц.

Кривая абсолютного порога слышимости является частным случаем более общих — кривых одинаковой громкости, изофонов: значения звукового давления на разных частотах, при котором человек ощущает звуки одинаково громкими. Кривые были впервые получены Флетчером и Мансоном (H. Fletcher and W. A. Munson) и опубликованы в 1933 году в труде «Loudness, its definition, measurement and calculation»[1]. Позже более точные измерения выполнили Робинсон и Датсон (D. W. Robinson and R. S. Dadson)[2]. Полученные кривые значительно различаются, но это не ошибка, а разные условия проведения измерений. Флетчер и Мэнсон в качестве источника звуковых волн использовали наушники, а Робинсон и Датсон — фронтально расположенный динамик в безэховой комнате.

Измерения Робинсона и Датсона легли в основу стандарта ISO 226 в 1986 г. В 2003 году стандарт ISO 226 был обновлён с учётом данных, собранных из 12 международных студий.

Существует также способ восприятия звука без участия барабанной перепонки — так называемый микроволновый слуховой эффект, когда импульсное или модулированное излучение в микроволновом диапазоне воздействует на ткани вокруг улитки, заставляя человека воспринимать различные звуки.[3]

Что мы слышим

Человеческий слух во многом подобен спектральному анализатору, то есть ухо распознаёт спектральный состав звуковых волн без анализа фазы волны. В реальности фазовая информация распознаётся и очень важна для направленного восприятия звука, но эту функцию выполняют ответственные за обработку звука отделы головного мозга. Разница между фазами звуковых волн, приходящих на правое и левое ухо, позволяет определять направление на источник звука, причём информация о разности фаз имеет первостепенное значение, в отличие от изменения громкости звука воспринимаемого разными ушами. Эффект фильтрации передаточных функций головы также играет в этом важную роль. Человеческое ухо способно в норме воспринимать звук от 10-30 dB в интервале частот от 125 до 8000 hz.[источник не указан 233 дня]

Эффект маскировки

В определённых случаях один звук может быть скрыт другим звуком. Например, разговор рядом с железнодорожными путями может быть совершенно невозможен, если мимо проезжает поезд. Этот эффект называется маскировкой. Говорят, что слабый звук маскируется, если он становится неразличимым в присутствии более громкого звука.

Различают несколько видов маскировки:

  • По времени прихода маскирующего и маскируемого звука:
    • одновре́менное (моноуральное) маскирование
    • вре́менное (неодновременное) маскирование
  • По типу маскирующего и маскируемого звуков:
    • чистого тона чистым тоном различной частоты
    • чистого тона шумом
    • речи чистыми тонами
    • речи монотонным шумом
    • речи импульсными звуками и т. п.

Одновременная маскировка

Любые два звука при одновременном прослушивании оказывают влияние на восприятие относительной громкости между ними. Более громкий звук снижает восприятие более слабого, вплоть до исчезновения его слышимости. Чем ближе частота маскируемого звука к частоте маскирующего, тем сильнее он будет скрываться. Эффект маскировки не одинаков при смещении маскируемого звука ниже или выше по частоте относительно маскирующего. Низкочастотный звук маскирует высокочастотные. При этом важно отметить, что высокочастотные звуки не могут маскировать низкочастотный.

Вре́менная маскировка

Это явление похоже на частотную маскировку, но здесь происходит маскировка во времени. При прекращении подачи маскирующего звука маскируемый некоторое время продолжает быть неслышимым. В обычных условиях эффект от временной маскировки длится значительно меньше. Время маскировки зависит от частоты и амплитуды сигнала и может достигать 100 мс.

В случае, когда маскирующий тон появляется по времени позже маскируемого, эффект называют пост-маскировкой. Когда маскирующий тон появляется раньше маскируемого (возможен и такой случай), эффект называют пре-маскировкой.

Постстимульное утомление

Нередко после воздействия громких звуков высокой интенсивности у человека резко снижается слуховая чувствительность. Восстановление обычных порогов может продолжаться до 16 часов. Этот процесс называется «временный сдвиг порога слуховой чувствительности» или «постстимульное утомление». Сдвиг порога начинает появляться при уровне звукового давления выше 75 дБ и соответственно увеличивается при повышении уровня сигнала. Причём наибольшее влияние на сдвиг порога чувствительности оказывают высокочастотные составляющие сигнала.

Фантомы

Иногда человек может слышать звуки в низкочастотной области, хотя в реальности звуков такой частоты не было. Так происходит из-за того, что колебания базилярной мембраны в ухе не являются линейными и в ней могут возникать колебания с разностной частотой между двумя более высокочастотными.

Этот эффект используется в некоторых коммерческих звуковых системах, чтобы расширить область воспроизводимых низких частот, если невозможно адекватно воспроизвести такие частоты напрямую, например в наушниках. При долгом прослушивании это может быть вредно для слуха.[источник не указан 267 дней]

Психоакустика в программном обеспечении

Психоакустические модели слуха позволяют с высоким качеством производить компрессию сигнала с потерей информации (когда восстановленный сигнал не совпадает с исходным), за счет того, что позволяют точно описать, что можно безопасно удалить из исходного сигнала — то есть без значительного ухудшения качества звука. На первый взгляд может показаться, что вряд ли это позволит обеспечить сильное сжатие сигнала, однако программы, использующие психоакустические модели, позволяют добиться уменьшения объёмов файлов с музыкой в 10—12 раз, и при этом разница в качестве будет не очень значительна.

К таким видам компрессии относятся все современные форматы сжатия звука с потерями:

  • MP3 (практически то же самое что и Musicam (используется для цифрового аудиовещания в некоторых странах, в отличие от mp3 (Mpeg 1 Layer 3) считается более профессиональным алгоритмом сжатия (кодеком). Также известен как MPEG-1 Layer 2 и MP2)
  • Ogg Vorbis
  • WMA
  • AAC
  • Musepack
  • ATRAC используется в формате MiniDisc и в некоторых портативных MP3-плеерах Sony

См. также

Примечания

  1. Fletcher H., Munson W. A. Loudness, its definition, measurement and calculation // J.Acoust. Soc Am.5, 82-108 (1933)
  2. Robinson D. W., Dadson R. S. A re-determination of the equal-loudness relations for pure tones // Br. J. Appl. Phys. 7, 166—181, 1956)
  3. Тигранян Р. Э., Шорохов В. В. Физические основы слухового эффекта СВЧ / Ответственный редактор — д-р физ.-мат наук проф. Л. П. Каюшин. — Пущино: ОНТИ Пущинского научного центра АН СССР, 1990. — 131 с. — 370 экз.

Литература

  • Гельмгольц Г. Учение о слуховых ощущениях как физиологическая основа для теории музыки. Пер. с нем. СПб., 1875.
  • Алдошина И. Основы психоакустики. Оборонгиз., Москва, 2000.
  • Штумпф К., Tonpsychologie, 1883, Bd. 1, 1890, Bd. 2 («Психология музыкальных восприятий»).
  • Meyer M. F., Contributions to a psychological theory of music (1901).
  • Мейер М., The Musician's Arithmetic (1929).
  • Мейер М., How we hear: How tones make music (1950).

Ссылки



Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Психоакустика" в других словарях:

  • психоакустика — психоакустика …   Орфографический словарь-справочник

  • психоакустика — сущ., кол во синонимов: 1 • акустика (12) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • психоакустика — психоаку/стика, и …   Слитно. Раздельно. Через дефис.

  • психоакустика — и, ж. Дисципліна в психології, яка займається звуком, його сприйняттям та фізіологічними основами слуху …   Український тлумачний словник

  • психоакустика — наука, изучающая психологические особенности восприятия звука человеком, а также влияние звука на человека …   Русский индекс к Англо-русскому словарь по музыкальной терминологии

  • ПСИХОЛОГИЧЕСКАЯ АКУСТИКА — (психоакустика) ветвь экспериментальной психологии, исследующей соотношения между звуковыми стимулами и ощущением на основе субъективных суждений. Термин «П. а.» появляется в связи с распространением радиовещания, звукозаписи и звукового кино,… …   Энциклопедический словарь по психологии и педагогике

  • Акустика — У этого термина существуют и другие значения, см. Акустика (значения). Акустика (от греч. ἀκούω (акуо)  слышу)  наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием… …   Википедия

  • Психоакустическая модель — Психоакустика  наука, изучающая психологические и физиологические особенности восприятия звука человеком. Содержание 1 Предпосылки 2 Пределы восприятия звука 3 Что мы слышим …   Википедия

  • Музыкальный слух — У этого термина существуют и другие значения, см. Слух. Музыкальный слух  совокупность способностей человека, позволяющих ему полноценно воспринимать музыку и адекватно оценивать те или иные её достоинства и недостатки; наиболее важное… …   Википедия

  • Теория колебаний — теория, рассматривающая всевозможные колебания, абстрагируясь от их физической природы. Для этого используется аппарат дифференциального исчисления. Содержание 1 Гармонические колебания …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»