Алгоритм фрактального сжатия


Алгоритм фрактального сжатия
Треугольник Серпинского — изображение, задаваемое тремя аффинными преобразованиями

Фрактальное сжатие изображений — алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций (как правило являющимися аффинными преобразованиями) к изображениям. Данный алгоритм известен тем, что в некоторых случаях позволяет получить очень высокие коэффициенты сжатия (лучшие примеры — до 1000 раз[источник не указан 903 дня] при приемлемом визуальном качестве) для реальных фотографий природных объектов, что недоступно для других алгоритмов сжатия изображений в принципе.[источник не указан 773 дня] Из-за сложной ситуации с патентованием широкого распространения алгоритм не получил.

Содержание

Описание

Основа метода фрактального кодирования — это обнаружение самоподобных участков в изображении. Впервые возможность применения теории систем итерируемых функций (англ. Iterated Function System, IFS) к проблеме сжатия изображения была исследована Майклом Барнсли (англ. Michael Barnsley[1]) и Аланом Слоуном (англ. Alan Sloan). Они запатентовали свою идею в 1990 и 1991 годах (U.S. Patent 5 065 447). А. Жакен (фр. Arnaud Jacquin) представил метод фрактального кодирования, в котором используются системы доменных и ранговых блоков изображения (англ. domain and range subimage blocks), блоков квадратной формы, покрывающих всё изображение. Этот подход стал основой для большинства методов фрактального кодирования. Он был усовершенствован Ювалом Фишером (англ. Yuval Fisher) и рядом других исследователей.

В соответствии с данным методом изображение разбивается на множество неперекрывающихся ранговых подизображений (англ. range subimages) и определяется множество перекрывающихся доменных подизображений (англ. domain subimages). Для каждого рангового блока алгоритм кодирования находит наиболее подходящий доменный блок и аффинное преобразование, которое переводит этот доменный блок в данный ранговый блок. Структура изображения отображается в систему ранговых блоков, доменных блоков и преобразований.

Идея заключается в следующем: предположим что исходное изображение является неподвижной точкой некоего сжимающего отображения. Тогда можно вместо самого изображения запомнить каким-либо образом это отображение, а для восстановления достаточно многократно применить это отображение к любому стартовому изображению.

По теореме Банаха, такие итерации всегда приводят к неподвижной точке, то есть к исходному изображению. На практике трудность заключается в отыскании по изображению наиболее подходящего сжимающего отображения и в компактном его хранении. Как правило, алгоритмы поиска отображения (то есть алгоритмы сжатия) в значительной степени переборные и требуют больших вычислительных затрат. В то же время, алгоритмы восстановления достаточно эффективны и быстры.

Вкратце, метод, предложенный Барнсли, можно описать следующим образом. Изображение кодируется несколькими простыми преобразованиями (в нашем случае аффинными), то есть определяется коэффициентами этих преобразований (в нашем случае A, B, C, D, E, F).

Например, изображение кривой Коха можно закодировать четырьмя аффинными преобразованиями, однозначно определив его с помощью всего 24-х коэффициентов.

Далее, поставив чёрную точку в любой точке картинки применим преобразования в случайном порядке некоторое (достаточно большое) число раз (этот метод ещё называют фрактальным пинг-понгом).

В результате точка обязательно перейдёт куда-то внутрь чёрной области на исходном изображении. После применения такой операции много раз будет заполнено всё чёрное пространство, что восстановит картинку.

Сложность метода

Основная сложность фрактального сжатия заключается в том, что для нахождения соответствующих доменных блоков требуется полный перебор. Поскольку при этом каждый раз должны сравниваться два массива, данная операция получается достаточно длительной. Сравнительно простым преобразованием её можно свести к операции скалярного произведения двух массивов, однако даже вычисление скалярного произведения требует довольно большого времени.

На данный момент[когда?] известно достаточно большое количество алгоритмов оптимизации перебора, возникающего при фрактальном сжатии, поскольку большинство статей, исследовавших алгоритм, были посвящены этой проблеме и во время активных исследований (1992—1996 года) выходило до 300 статей в год. Наиболее эффективными оказались два направления исследований: метод выделения особенностей (feature extraction) и метод классификации доменов (classification of domains).

Патенты

Майклом Барнсли и другими было получено несколько патентов на фрактальное сжатие в США и других странах. Например, U.S. Patent 4 941 193, 5,065,447, 5,384,867, 5,416,856 и 5,430,812. Эти патенты покрывают широкий спектр возможных изменений фрактального сжатия и серьёзно сдерживают его развитие.

Данные патенты не ограничивают исследований в этой области, то есть можно придумывать свои алгоритмы на основе запатентованных и публиковать их. Также, можно продавать алгоритмы в страны, на которые не распространяются полученные патенты. Кроме того, срок действия большинства патентов — 17 лет с момента принятия, и он истекает для большинства патентов в ближайшее время, соответственно, использование методов, покрывавшихся этими патентами, станет гарантированно свободным.

См. также

Примечания

Ссылки



Wikimedia Foundation. 2010.

Смотреть что такое "Алгоритм фрактального сжатия" в других словарях:

  • Фрактал — Множество Мандельброта  классический образец фрактала …   Википедия

  • Сжатие изображений — Сжатие изображений  применение алгоритмов сжатия данных к изображениям, хранящимся в цифровом виде. В результате сжатия уменьшается размер изображения, из за чего уменьшается время передачи изображения по сети и экономится пространство для… …   Википедия

  • Фрактальная графика — Множество Мандельброта классический образец фрактала Фрактал (лат. fractus дробленый) термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре… …   Википедия

  • Фракталы — Множество Мандельброта классический образец фрактала Фрактал (лат. fractus дробленый) термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре… …   Википедия

  • Фрактальное сжатие — Треугольник Серпинского  изображение, задаваемое тремя аффинными преобразованиями Фрактальное сжатие изображений  это алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций (IFS, как правило являющимися… …   Википедия

  • Стеганография — Не следует путать с стенографией. Запрос «Тайнопись» перенаправляется сюда; о тайнописи в Древней Руси см. Древнерусские тайнописи. Стеганография (от греч. στεγανός  скрытый + γράφω  пишу; буквально «тайнопись»)  это наука о… …   Википедия

  • Невидимые чернила — Стеганография (от греч. στεγανοσ  скрытый и греч. γραφω  пишу, буквально «тайнопись»)  это наука о скрытой передаче информации путём сохранения в тайне самого факта передачи. В отличие от криптографии, которая скрывает содержимое секретного… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.