Максимальный идеал

Максимальный идеал

Максимальным идеалом (коммутативного) кольца называется всякий собственный идеал кольца, не содержащийся ни в каком другом собственном идеале.

Свойства

  • Множество всех идеалов кольца индуктивно упорядочено по отношению включения, поэтому (Лемма Цорна) во всяком кольце максимальные идеалы существуют, более того, для всякого собственного идеала I кольца R существует максимальный идеал кольца R, который его содержит.
  • (Считаем далее, речь идёт о кольцах с единицей.)
    Если элемент a кольца R не обратим, тогда все элементы кольца, кратные ему, образуют собственный идеал. Поэтому каждый необратимый элемент кольца содержится в некотором максимальном идеале. Если элемент a обратим, всякий идеал, который его содержит, совпадает со всем кольцом, поэтому обратимые элементы не содержатся ни в каком собственном идеале, соответственно и ни в каком максимальном.
  • Если все необратимые элементы кольца R образуют идеал, он является максимальным, и притом единственным - других максимальных идеалов в кольце R нет. (Верно и обратное: если в кольце R максимальный идеал единствен, он включает в себя все необратимые элементы кольца.) В этом случае кольцо R называется локальным кольцом.
  • Характеристическое свойство максимального идеала: идеал I кольца R максимален, тогда и только тогда, когда факторкольцо R/I является полем (в нём каждый элемент обратим).
  • Если кольцо R имеет структуру банаховой алгебры над полем комплексных чисел С, факторкольцо по максимальному идеалу R/I изоморфно C. В этом случае идеал I определяет гомоморфизм кольца R в поле C, ядром которого является идеал I.
    Для каждого a существует единственное число \lambda_a, такое что a-\lambda_a e\in I (e - единица алгебры R). Соответствие a\to \lambda_a и есть тот самый гомоморфизм.
  • Из характеристического свойства следует, что всякий максимальный идеал является простым.

Примеры

  • В кольце целых чисел Z максимальными идеалами являются все простые идеалы: если p - простое число, тогда идеал (p)=pZ максимален. Например, чётные числа образуют максимальный идеал, а числа, кратные 4 - образуют идеал, но не максимальный - этот идеал содержится в идеале чётных чисел.
  • В кольце многочленов k[X,Y], где k - алгебраически замкнутое поле, максимальные идеалы имеют вид I_{a,b} = \{f\in k[X,Y]: f(a,b) = 0 \},\quad a,b\in k.
  • Кольцо степенных рядов k[[X]] над полем k - локальное кольцо. Необратимые элементы - те, которые не содержат свободного члена. Они образуют идеал. Он - единственный максимальный идеал в этом кольце.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Максимальный идеал" в других словарях:

  • МАКСИМАЛЬНЫЙ ИДЕАЛ — максимальный элемент в частично упорядоченном множестве тех или иных собственных идеалов соответствующей алгебраич. системы. М. и. играют существенную роль в теории колец. Всякое кольцо с единицей обладает левыми (а также правыми и двусторонними) …   Математическая энциклопедия

  • Идеал (алгебра) — У этого термина существуют и другие значения, см. Идеал (значения). Идеал одно из основных понятий абстрактной алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других… …   Википедия

  • ИДЕАЛ — специального рода подобъект в иек рой алгебраич. структуре. Понятие И. возникло первоначально в теории колец. Название И. ведет свое происхождение от идеальных чисел. Для алгебры, кольца или полугруппы Аидеал I есть подалгебра, подкольцо или… …   Математическая энциклопедия

  • Простой идеал — В коммутативном кольце идеал называется простым, если факторкольцо по нему является областью целостности. Равносильная формулировка: если и из следует или . Понятие простого идеала явля …   Википедия

  • ПРОСТОЙ ИДЕАЛ — двусторонний идеал Ркольца Rтакой, что из , где Аи В идеалы в R, следует, что либо , либо . Для ассоциативного кольца экливалентным определением на языке элементов будет следующее: или , где а, b элементы кольца R. Всякий примитивный идеал прост …   Математическая энциклопедия

  • Модулярный идеал — или регулярный идеал ― правый (левый) идеал кольца , обладающий следующим свойством: в кольце найдется хотя бы один такой элемент , что для всех разность принадлежит (соответственно …   Википедия

  • Регулярный идеал — Модулярный идеал или регулярный идеал ― правый (левый) идеал I кольца R, обладающий следующим свойством: в кольце R найдется хотя бы один такой элемент e, что для всех разность x − ex принадлежит I (соответственно ). Элемент e называется левой… …   Википедия

  • Нильпотентный идеал — односторонний или двусторонний идеал кольца такой, что для некоторого натурального выполняется , то есть произведение любых элементов идеала равно нулю. Примеры В кольце вычетов по модулю …   Википедия

  • МОДУЛЯРНЫЙ ИДЕАЛ — правый (левый) идеал J кольца R, обладающий следующим свойством: в кольце R найдется хотя бы один такой элемент е, что для всех хиз R разность х ех принадлежит J (соответственно ). Элемент еназ. левой (правой) единицей по модулю идеала J. В… …   Математическая энциклопедия

  • НИЛЬ ПОТЕНТНЫЙ ИДЕАЛ — односторонний или двусторонний идеал Мкольца или полугруппы с нулем Атакой, что для нек рого натурального пвыполняется , т. е. произведение любых пэлементов идеала Мравно нулю. Напр., в кольце вычетов по модулю , где р нек рое простое число, все… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»