- Остеосцинтиграфия
-
Остеосцинтигра́фия, или сцинтигра́фия скеле́та (англ. bone scan или bone scintigraphy) — метод радионуклидной диагностики, основанный на введении в организм пациента тропного к костной ткани радиофармацевтического препарата (РФП) и последующей регистрации его распределения и накопления в скелете с помощью гамма-излучения изотопа, входящего в состав препарата. Регистрацию распределения радиофармацевтического препарата проводят с помощью гамма-камеры. Данный метод — один из наиболее востребованных в ядерной медицине за счёт высокой чувствительности выявления патологии костей. Чувствительность метода основана на способности обнаруживать функциональные, а не структурные изменения.[1]
Содержание
История
Впервые Chievitz O. and Hevesy G. в 1935 году обратили внимание при радиобиологических экспериментах на грызунах на возможность изучения метаболизма скелета с помощью 1942 году Treawell Ade G. et al. использовали для этих целей стронция с распределением кальция. После данных экспериментов было исследовано несколько изотопов: 1965 году Bolliger T.T. et al. предложил использовать в качестве радиофармпрепарата пертехнетат для диагностики экстракраниальных первичных и метастатических новообразований, но на практике распределение и накопление пертехнетата меньше в сравнении с триполифосфат, с помощью которого было получено существенно более значимое накопление индикатора в костной ткани. Затем R.Perez были предложены комплексы, превосходящие 99mTc-полифосфаты, среди которых был 99mTc-пирофосфат и 99mTc-метилендифосфонат. Пирофосфат и бисфосфонаты различаются, в основном, связыванием между двумя фосфатными группами. У пирофосфата они связаны через кислород (P-O-P), а у бисфосфонатов (P-C-P) — через углерод[2].
Радиофармацевтические препараты для остеосцинтиграфии
В настоящее время для исследования костей используются исключительно меченые 99mTc фосфатные комплексы[2]:
Радиофармпрепарат Носитель Торговое название, производитель 99mTc-PyP пирофосфат Пирфотех (ООО «Диамед», Россия) 99mTc-MDP метилендифосфонат, медронат MDP (Amersham, Великобритания) 99mTc-HEDP гидроксиэтилидендифосфонат, этидронат Фосфотех (ООО"Диамед", Россия) 99mTc-EDTMP этилендиаминтетраметиленфосфоновая кислота, оксабифор Технефор (ООО"Диамед", Россия) 99mTc-ZDA золедроновая кислота, золедронат Резоскан (ЗАО «Фарм-Синтез», Россия) Наибольший интерес в радионуклидной диагностике скелета проявляется к РФП (Резоскан) на основе бисфосфоната последнего поколения золедроновой кислоты меченой 99mTc (золедроновая кислота так же применяется при лечении костных метастазов и остеопороза) . Данный РФП обладает способностью накаливаться не только в бластных метастазах, но и в литических, а также его накопление более специфично к очагам костно-дегенеративных поражений скелета [3].
При остеосцинтиграфии в неизмененных костных структурах скелета накопление 99mTc-золедроновой кислоты, как и других остеотропных РФП симметрично. При использовании режима исследования «whole body» (планарная сцинтиграфия всего тела в двух проекциях: передней и задней) в передней проекции относительно более выраженная степень накопления РФП встречается в суставах, метафизах длинных трубчатых костей, в грудине, костях лицевого черепа, гребешках подвздошной кости. В задней проекции — в тазовых костях, лопатках, крестце и позвоночнике.
Диагностика заболеваний скелета
Правильное заключение на основе полученных сцинтиграмм невозможно без понимания механизма захвата РФП костью. В областях остеогенной активности растет количество кристаллов гидроксиопатита, на поверхности которых адсорбируются фосфатные комплексы. Накопление РФП закономерно возрастает при[4]:
- Остеобластической активности патологического процесса
- Увеличении кровотока
- Сосудистой проницаемости
Для повышения эффективности диагностики в зависимости от стадии процесса и самой патологии, помимо скриниговой ренгенографии, применяют остеосцинтиграфию. Этапы эффективности выбора остеосцинтиграфия/рентгенография зависят от стадии патологического процесса и его характера[5]:
Метаболическая активность Стадия Остеосцинтиграфия Рентгенография Активна Деструкция/деминерализация + - Активна Созревание и минерализация молодого остеоида + + Не активна Полная минерализация и зрелость - + Метастазы
Сцинтиграфия метастатического поражения скелета с помощью РФП «Резоскан» (99mTc-золедроновой кислоты)Таблица распространенности метастазирования в скелет [6]
Опухоль Частота метастазирования Медиана выживаемости, мес Миелома 70-90 % 6-54 Почки 20-25 % 6 Меланома 14-45 % 6 Щитовидная железа 60 % 48 Легкие 30-40 % 6 Молочная железа 65-75 % 19-25 Предстательная железа 65-75 % 12-53 В настоящее время поиск метастазов в скелете — довольно сложная задача, где наиболее чувствительным и специфичным методом является сцинтиграфия остеотропными радиофармпрепаратами. Сцинтиграфические находки выглядят как единичные или множественные, равномерные — неравномерные, фотопенические или гепераккумулированные очаги и т. д.
Большинство костных метастазов соответствует распределению костного мозга в скелете и локализуется в осевом скелете (80 %[4]): позвоночник, таз, ребра, грудина и череп. Соответственно до 20 % метастазов локализуется в конечностях или черепе, поэтому важно при проведении остеосцинтиграфии сканировать весь скелет.
Остеомиелит
Типичная картина артроза, выявленная при сканировании с «Резоскан» (99mTc-золедроновая кислота) через 1 часОдной из традиционных сторон остеосцинтиграфии является диагностика остеомиелита и других костных воспалений. Так большинство специалистов в радионуклидной диагностики считают, что для диагностики остеомиелита целесообразно проведение трехфазной (четырёхфазной) сцинтиграфии. Протокол его следующий:
Фаза Время проведения Оценка I Первая минута Уровень кровотока в патологического очаге II Следующие 5 минут Распределение объёма крови в патологическом очаге III Через 2-4 часа Распределение в кости IV Через 24 часа Распределение в кости Для остеомиелита как для любого другого воспалительного очага характерно:
- Увеличение кровотока
- Увеличение объёма крови
- Сравнительно большая интенсивность накопления РФП в соответствующей области
Четвёртая фаза обеспечивает возможность дифференцировать выраженность воспалительной реакции на инфекцию в костной ткани и окружающих её мягких тканях [2]. Таким образом, остеосцинтиграфия считается весьма чувствительным методом для раннего распознавания остеомиелита.
Травма
Остеосцинтиграфия превосходный метод обнаружения скрытых, стрессовых переломов (которые встречаются у 10 % бегунов), микротрещин, ушиба кости и спортивных травм. Для диагностики травмы также возможно применение метода трехфазной сцинтиграфии[7].
Артропатологии
Остеосцинтиграфия — самый чувствительный тест на обнаружение ранних патологических изменений в суставах, основу которых составляет поражение синовиальной оболочки с нередкими изменениями внутрисуставных костных структур. Так на сцинтиграммах при артропатиях отмечают:
- увеличение захвата в сосудистой фазе (гиперемия)
- увеличение захвата в мягкотканой фазе (повышенная проницаемость)
Лучевая нагрузка
Лучевые нагрузки на органы и все тело пациента при использовании различных радиофармацевтических препаратов отличается. Данная особенность зависит от фармакокинетики препарата, применяемого изотопа, вида излучения и т. д. В среднем эффективная доза при проведении исследования состоявляет 0,0016 мЗв/МБк[8].
Приготовление РФП
Радиофармацевтические препараты приготавливают непосредственно перед введением пациенту. В качестве метки, как правило, применяют 99mTc, который получают в виде элюата из генератора лиофилизатом радиофармпрепарата для связывания метки с лигандом. После чего РФП готов к применению.
Работа с «активным» препаратом должна проводиться в соответствии с:
- «Основными санитарными правилами обеспечения радиационной безопасности» (ОСПОРБ-99)
- Cанитарными правилами СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)»
- Методическими указаниями «Гигиенические требования по обеспечению радиационной безопасности при проведении радионуклидной диагностики с помощью радиофармпрепаратов» (МУ 2.6.1.1892-04)
Литература
- ↑ Эмиссионная томография. Основы ПЭТ и ОФЭКТ = Emission Tomography: The Fundamentals of PET and SPECT / Под ред. Д. Арсвольда, М. Верника. — М.: Техносфера, 2009. — 600 с. — ISBN 978-5-94836-226-7
- ↑ 1 2 3 Изотопы: свойства, получение, применение / Под ред. В.Ю.Баранова. — М.: Физматлит, 2005. — Т. В 2 т. Т.2. — 728 с. — ISBN 5-9221-0523-X
- ↑ О.И.Аполихин, А.В.Сивков и др. Новый радиофармацевтический препарат Резоскан, 99mTc в диагностике патологических изменений скелета у больных раком предстательной железы // Экспериментальная и клиническая урология. — М: Медфорум, 2010. — № 1. — С. 43-48.
- ↑ 1 2 С. П. Паша, С. К. Терновой. Радионуклидная диагностика. Издательство: ГЭОТАР-Медиа, 2008. С. 208. ISBN 978-5-9704-0882-7
- ↑ A. W. Wilson et al. Bone scintigraphy in the management of X-ray-negative potential scaphoid fractures // Archives of Emergency Medicine,. — 1986. — Т. 3. — С. 235-242.
- ↑ Allan Lipton, MD. Pathophysiology of Bone Metastases: How This Knowledge May Lead to Therapeutic Intervention // The Journal of Supportive Oncology. — 2004. Volume 2, Number 3. P. 205—220.
- ↑ Monique M. C. Tiel-van Buul, Edwin J. R. van Beek, Annemarie van Dongen and Eric A. van Royen The reliability of the 3-phase bone scan in suspected scaphoid fracture: an inter- and intraobserver variability analysis // European Journal of Nuclear Medicine and Molecular Imaging. — Springer Berlin / Heidelberg, 1993. — Т. 19. — № 10. — С. 848-852.
- ↑ Инструкция по применению радиофармпрепарата Резоскан (рус.). ЗАО "Фарм-Синтез" (04.08.2010).(недоступная ссылка — история) Проверено 4 августа 2010.
Ссылки
Лаборатория доклинических и клинических исследований радиофармпрепаратов — страница научно-исследовательской лаборатории ФМБЦ им. А. И. Бурназяна
ЗАО «Фарм-Синтез» — официальный сайт российской фармацевтической компании по производству радиофармпрепаратов
Методы медицинской визуализации Рентгенологические Ангиография · Компьютерная томография · КТ-ангиография (КТ-ангиопульмонография, КТ-коронарография) · Контрастная рентгенография · Линейная томография · Миелография · Рентгеновская маммография · Рентгенография · Томосинтез · Флюорография Магнитно-резонансные МР-томография (МРТ) · Функциональная МР-томография (фМРТ) · МР-спектроскопия · МР-ангиография Радионуклидные Однофотонная эмиссионная компьютерная томография (ОФЭКТ) · Позитронно-эмиссионная томография (ПЭТ) Оптические (лазерные) Оптическая когерентная томография · Оптическая маммография · Оптическая томография · Оптическая топография Ультразвуковые Эхоэнцефалография · Эхокардиография · УЗИ ОБП · УЗИ почек · УЗИ ОМТ · УЗИ плода · УЗИ шеи · Допплерография Эндоскопические Артроскопия · Бронхоскопия · Гистероскопия · Лапароскопия · Ректоскопия · Торакоскопия · Цистоскопия · Эзофагогастродуоденоскопия Категории:- Радиология
- Радиобиология
Wikimedia Foundation. 2010.