- Теорема Асколи-Арцела
-
Wikimedia Foundation. 2010.
Теорема Асколи — Арцела — Теорема Арцела утверждение, которое представляет собой критерий предкомпактности множества в полном метрическом пространстве в том специальном случае, когда рассматриваемое пространство пространство непрерывных функций на отрезке… … Википедия
Теорема Асколи - Арцела — … Википедия
Теорема Асколи — Теорема Арцела утверждение, которое представляет собой критерий предкомпактности множества в полном метрическом пространстве в том специальном случае, когда рассматриваемое пространство пространство непрерывных функций на отрезке… … Википедия
Арцела, Чезаре — Чезаре Арцела итал. Cesare Arzelà … Википедия
Теорема Монтеля о компактном семействе функций — У этого термина существуют и другие значения, см. Теорема Монтеля. Теорема Монтеля об условиях компактности семейства голоморфных функций или принцип компактности: Пусть ― бесконечное семейство голоморфных функций в области комплексной плоскости… … Википедия
АРЦЕЛА - АСКОЛИ ТЕОРЕМА — название ряда теорем, указывающих условия дл я того, чтобы предел последовательности непрерывных функций был функцией непрерывной (одно из таких условий квазиравномерная сходимость последовательности). Лит.:[1] Arzе1а С., Mem. Accad. sci Bologna … Математическая энциклопедия
Теорема Арцела-Асколи — … Википедия
Компактное пространство — определённый тип топологических пространств, включающий Все пространства с конечным числом точек; Все замкнутые и ограниченные подмножества евклидова пространства. В топологии компактные пространства по своим свойствам напоминают конечные… … Википедия
Бикомпактное пространство — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
Компактное множество — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия