- Соприкасающаяся окружность
-
Соприкаса́ющаяся окру́жность, окру́жность кривизны́ — окружность, являющаяся наилучшим приближением заданной кривой в окрестности данной точки. В этой точке кривая и означенная окружность испытывают касание, порядок которого не ниже 2. Окружность кривизны существует в каждой точке дважды дифференцируемой кривой с отличной от нуля кривизной; в случае нулевой кривизны в качестве соприкасающейся надлежит рассматривать касательную прямую — «окружность бесконечного радиуса».
Соприкасающаяся окружность (или прямая) в точке кривой также может быть определена как предельное положение окружности (или прямой), проходящей через и две близкие к ней точки , когда стремятся к .
Связанные определения
Центр соприкасающейся окружности называют центром кривизны, а радиус — радиусом кривизны. Радиус кривизны является величиной, обратной кривизне кривой в заданной точке:
Центр соприкасающейся окружности всегда лежит на главной нормали кривой; отсюда следует, что эта нормаль всегда направлена в сторону вогнутости кривой.
Геометрическое место центров кривизны кривой называется эволютой.
Свойства
- Теорема Кнесера. Если кривизна плоской кривой строго монотонна, то её соприкасающиеся окружности не пересекаются друг с другом.
История
Понятие соприкасающейся окружности (лат. circulum osculans) было введено Лейбницем.
Категория:- Дифференциальная геометрия кривых
Wikimedia Foundation. 2010.