Уравнение колебаний струны
- Уравнение колебаний струны
-
Волновое уравнение в математике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн.
Вид уравнения
В общем случае волновое уравнение записывается в виде
,
где
— оператор Лапласа,
— неизвестная функция,
— время,
— пространственная переменная.
,
где
— фазовая скорость.
В одномерном случае уравнение называется также уравнением колебания струны и записывается в виде
.
Оператор Д’Аламбера
Разность
называется оператором Д’Аламбера (разные источники используют разный знак). Таким образом, волновое уравнение записывается как: 
Неоднородное уравнение
Допустимо также рассматривать неоднородное волновое уравнение
,
где f = f(x,t) — некая заданная функция внешнего воздействия (внешней силы).
Стационарным вариантом волнового уравнения является уравнение Лапласа (уравнение Пуассона в неоднородном случае).
Задача нахождения нормальных колебаний системы, описываемой волновым уравнением, приводит к задаче на собственные значения для уравнения Лапласа, то есть к нахождению решений уравнения Гельмгольца, получающегося подстановкой
или
.
Решение волнового уравнения
-
Существует аналитическое решение гиперболического уравнения в частных производных. В евклидовом пространстве произвольной размерности оно называется формулой Кирхгофа. Частные случаи: для колебания струны (
) — формула Д’Аламбера, для колебания мембраны (
) — формула Пуассона.
Решение одномерного волнового уравнения
(функция f(x,t) соответствует вынуждающей внешней силе)
с начальными условиями

имеет вид

См. также
Wikimedia Foundation.
2010.
Полезное
Смотреть что такое "Уравнение колебаний струны" в других словарях:
Уравнение колебания струны — Волновое уравнение в математике линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика,… … Википедия
Уравнение в частных производных — Дифференциальное уравнение в частных производных (общеупотребительно сокращение (Д)УЧП, также известны как уравнения математической физики, УМФ) дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные… … Википедия
Дифференциальное уравнение в частных производных — (частные случаи также известны как уравнения математической физики, УМФ) дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные. Содержание 1 Введение 2 История … Википедия
Дифференциальное уравнение с частными производными — Дифференциальное уравнение в частных производных (общеупотребительно сокращение (Д)УЧП, также известны как уравнения математической физики, УМФ) дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные… … Википедия
ШРЕДИНГЕРА УРАВНЕНИЕ — основное динамич. ур ние нерелятив. квант. механики; предложено австр. физиком Э. Шрёдингером (Е. Schr?dinger) в 1926. В квант. механике Ш … Физическая энциклопедия
Шрёдингера уравнение — основное динамическое уравнение нерелятивистской квантовой механики (См. Квантовая механика); названо в честь австрийского физика Э. Шрёдингера, который предложил его в 1926. В квантовой механике Ш. у. играет такую же фундаментальную роль … Большая советская энциклопедия
Телеграфное уравнение — в математике, дифференциальное уравнение с частными производными, описывающее при определённых упрощающих предположениях процесс распространения тока по проводу. Сила тока i и напряжение u. удовлетворяют системе Т. у. ,… … Большая советская энциклопедия
Волновое уравнение — в математике линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно… … Википедия
ВОЛНОВОЕ УРАВНЕНИЕ — в механике, линейное однородное дифф. ур ние в частных производных, описывающее распространение волн в среде; имеет вид: где t время, х, у, z пространственные декартовы координаты, W= W(х, у, z, t) ф ция, характеризующая возмущение среды в точке… … Физическая энциклопедия
УРЧП — Дифференциальное уравнение в частных производных (общеупотребительно сокращение (Д)УЧП, также известны как уравнения математической физики, УМФ) дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные… … Википедия