- Параллелограм
-
Параллелогра́мм (от греч. parallelos — параллельный и gramme — линия) — это четырёхугольник, у которого противолежащие стороны попарно параллельны, т. е. лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.
Содержание
Свойства
- Противоположные стороны параллелограмма равны
- | AB | = | CD | , | AD | = | BC | .
- Противоположные углы параллелограмма равны
- Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам
- | AO | = | OC | , | BO | = | OD | .
- Сумма углов, прилежащих к одной стороне, равна 180°.
- Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его сторон:
пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; тогда
ДоказательстваПроведя диагональ BD, мы получим два треугольника ABD и BCD, которые равны, т.к. одна сторона у них общая, а соответственные углы при стороне BD равны как накрест лежащие при параллельных прямых AB
- Аффинное преобразование всегда переводит параллелограмм в параллелограмм. Для любого параллелограмма существует аффинное преобразование, которое отображает его в квадрат.
Признаки параллелограмма
Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий:
- Противоположные стороны попарно равны (|AB| = |CD|, |AD| = |BC|).
- Противоположные углы попарно равны (∠A = ∠C, ∠B = ∠D).
- Две противоположные стороны равны и параллельны (|AB| = |CD|, AB || CD).
- Диагонали делятся в точке их пересечения пополам (|AO| = |OC|, |BO| = |OD|).
Площадь
Площадь параллелограмма SABCD можно найти по следующим формулам:
где hAD — высота опущенная на сторону AD,
, β — угол между диагоналями.
См. также
- Трапеция
- Прямоугольник
- Ромб
- Дельтоид
- Параллелепипед
- Параллелограмм Вариньона
- Противоположные стороны параллелограмма равны
Wikimedia Foundation. 2010.