- Межфазное натяжение
-
Монета, лежащая на воде в силу поверхностного натяжения
Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса Теория упругости Напряжение · Тензор · Твёрдые тела · Упругость · Пластичность · Закон Гука · Реология · Вязкоэластичность Гидродинамика Жидкость · Гидростатика · Гидродинамика · Вязкость · Ньютоновская жидкость · Неньютоновская жидкость · Поверхностное натяжение Основные уравнения Уравнение непрерывности · Уравнение Эйлера · Уравнения Навье — Стокса · Уравнение диффузии · Закон Гука Известные учёные Ньютон · Гук
Бернулли · Эйлер · Коши · Стокс · НавьеПове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.
Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует. Сила поверхностного натяжения пропорциональна длине того участка контура, на который она действует. Коэффициент пропорциональности γ — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется физический смысл и связь понятия поверхностного натяжения с внутренней энергией, что было доказано теоретически (Журнал физической химии. 1983, № 10)
Поверхностное натяжение может быть на границе газообразных, жидких и твёрдых тел. Обычно имеется в виду поверхностное натяжение жидких тел на границе «жидкость — газ». В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.
В общем случае прибор для измерения поверхностного натяжения называется тензиометр.
Содержание
Проявления
Водомерка на поверхности воды.Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:
- в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех фигур одинаковой ёмкости).
- струя воды «слипается» в цилиндр.
- маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади жидкости.
- некоторые насекомые (например, Водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.
- На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли.
Математическая теория
Площадь поверхности
С поверхностью жидкости связана свободная энергия
где σ — коэффициент поверхностного натяжения, S — полная площадь поверхности жидкости[1]. Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности. Таких образом задача о форме жидкости сводится к изопериметрической задаче при заданных дополнительных условиях (начальное распределение, объём и т. п.). Свободная капля принимает форму шара, однако при более сложных условиях задача о форме поверхности жидкости становится исключительно сложной.
Формула Лапласа
Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:
Здесь R1,2 — радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную cторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому
- R1 = R2 = R
Для случая поверхности кругового цилиндра радиуса R имеем
Обратите внимание, что Δp должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.
Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.
Способы определения
Способы определения поверхностного натяжения делятся на статические и динамические. В статических методах поверхностное натяжение определяется у сформировавшейся поверхности, находящейся в равновесии. Динамические методы связаны с разрушением поверхностного слоя. В случае измерения поверхностного натяжения растворов (особенно полимеров или ПАВ) следует пользоваться статическими методами. В ряде случаев равновесие на поверхности может наступать в течение нескольких часов (например, в случае концентрированных растворов полимеров с высокой вязкостью). Динамические методы могут быть применены для определения равновесного поверхностного натяжения и динамического поверхностного натяжения. Например, для раствора мыла после перемешивания поверхностное натяжение 58 Дж/м2, а после отстаивания — 35 Дж/м2 . То есть поверхностное натяжение меняется. До установления равновесного оно будет динамическое.
Статические методы:
- Метод поднятия в капилляре
- Метод Вильгельми
- Метод лежачей капли
- Метод определения по форме висячей капли.
- Метод вращающейся капли
Динамические методы:
- Метод Дю Нуи (метод отрыва кольца).
- Сталагмометрический, или метод счета капель.
- Метод максимального давления пузырька.
- Метод осциллирующей струи
- Метод стоячих волн
Методы
Полностью стандартизованные методы измерений описываются в соответствующих ГОСТ и т. д.
Метод вращающейся капли
Сущностью метода является измерение диаметра капли жидкости, вращающейся в более тяжелой жидкости. Этот способ измерения годится для измерения низких или сверхнизких значений межфазного натяжения. Он широко применяется для микроэмульсий, измерения эффективности ПАВ в нефтедобыче, а также для определения адсорбционных свойств.
Метод Дю Нуи (метод отрыва кольца)
Метод является классическим. Сущность метода вытекает из названия. Платиновое кольцо поднимают из жидкости, смачивающей его, усилие отрыва и есть сила поверхностного натяжения и может быть пересчитано в поверхностную энергию. Метод подходит для измерения ПАВ, трансформаторных масел и т. д.
Поверхностное натяжение жидкостей на границе с воздухом
Вещество Температура °C Поверхностное натяжение(10-3 Н/м) Хлорид натрия 6.0M водный раствор 20 82,55 Хлорид натрия 801 115 Глицерин 30 64,7 Олово 400 518 Азотная кислота 70 % 20 59,4 Анилин 20 42,9 Ацетон 20 23,7 Бензол 20 29,0 Вода 20 72,86 Глицерин 20 59,4 Нефть 20 26 Ртуть 20 486,5 Ртуть 25 485,5 Ртуть 30 484,5 Серная кислота 85 % 20 57,4 Спирт этиловый 20 22,8 Уксусная кислота 20 27,8 Эфир этиловый 20 16,9 Раствор мыла 20 40 Примечания
- ↑ Обратите внимание, что плёнка, вроде стенки мыльного пузыря, имеет две стороны, так что площадь поверхности жидкости в два раза больше площади плёнки.
См. также
Внешние ссылки
Wikimedia Foundation. 2010.