- Σ-алгебра
-
σ-алгебра (си́гма-а́лгебра) — это алгебра множеств, замкнутая относительно операции счётного объединения. Сигма-алгебры играют важнейшую роль в теории меры и интегралов Лебега, а также в теории вероятностей.
Содержание
Определение
Семейство
подмножеств множества X называется σ-алгеброй, если оно удовлетворяет следующим свойствам:
содержит пустое множество.
- Если
, то и его дополнение
.
- Объединение счётного подсемейства из
также в
.
Замечания
- Для любой системы множеств
существует минимальная сигма-алгебра
, являющаяся её надмножеством.
- Сигма-алгебры являются естественной областью определения счётно-аддитивных мер. Если мера определена частично (на семействе множеств
) так, что выполнено условие сигма-аддитивности (синоним счётной аддитивности), эта частичная мера имеет единственное продолжение на
, то есть на минимальную сигма-алгебру, это семейство содержащую, и при этом свойство сигма-аддитивности не нарушится.
- σ-алгебра, порождённая случайной величиной
, определяется следующим образом:
-
,
- где
— борелевская сигма-алгебра на вещественной прямой. Это — минимальная сигма-алгебра на пространстве X, относительно которой случайная величина ξ всё ещё остаётся измеримой. Эта же конструкция применяется и в том случае, если на пространстве X вообще не выделена никакая сигма-алгебра, в этом случае с помощью функции ξ её можно ввести и наделить таким образом пространство X структурой измеримого пространства так, что функция ξ будет измеримой.
Связанные определения
- Измеримое пространство — это пара
, где X — множество, а
— сигма-алгебра его подмножеств.
Примеры
- Борелевская сигма-алгебра
- Для любого множества X можно построить тривиа́льную σ-алгебру
, где
— пустое множество.
- Для любого множества X можно построить ещё одну тривиа́льную σ-алгебру, которая содержит все его подмножества.
Wikimedia Foundation. 2010.