ТЕЙЛОРА РЯД — степенной ряд вида где f(а), f (а), f (а),... значения заданной функции f(х) и ее последовательных производных при х=а (если а=0, то Тейлора ряда называют рядом Маклорена). Частные суммы Тейлора ряда важный аппарат приближенного представления… … Большой Энциклопедический словарь
ТЕЙЛОРА РЯД — степенной ряд, описывающий поведение данной ф ции f( х) в окрестности заданной точки. Точнее, если f(x )в точке х0 имеет бесконечное число производных, то её Т. р. имеет вид Т. р. назван по имени Б. Тейлора (В. Taylor), опубликовавшего ряд (*) в… … Физическая энциклопедия
Тейлора ряд — степенной ряд вида где f(а), f (a), f (а), ... значения заданной функции f(х) и её последовательных производных при х = а (если а = 0, то ряд Тейлора называют рядом Маклорена). Частные суммы ряда Тейлора важный аппарат приближённого… … Энциклопедический словарь
ТЕЙЛОРА РЯД — степенной ряд где числовая функция f определена в нек рой окрестности точки х 0 и имеет в этой точке производные всех порядков. Частными суммами Т. р. являются Тейлора многочлены. Если х 0 комплексное число, функция f определена в нек рой… … Математическая энциклопедия
Тейлора ряд — Степенной ряд вида , (1) где f (x) функция, имеющая при х = а производные всех порядков. Во многих практически важных случаях этот ряд сходится к f (x) на некотором интервале с центром в точке а: … Большая советская энциклопедия
Тейлора ряд — … Википедия
Ряд Тейлора — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Брука Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а… … Википедия
Ряд тейлора — разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды Тейлора… … Википедия
Ряд Маклорена — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды… … Википедия
Ряд Бюрмана — Лагранжа — определяется как разложение голоморфной функции f(z) по степеням другой голоморфной функции w(z) и представляет собой далеко идущее обобщение ряда Тейлора. Пусть f(z) и w(z) голоморфны в окрестности некоторой точки , притом w(a) = 0 и a простой… … Википедия