Ряд Бюрмана — Лагранжа

Ряд Бюрмана — Лагранжа

Ряд Бюрмана — Лагранжа

Ряд Бюрмана — Лагранжа определяется как разложение голоморфной функции f(z) по степеням другой голоморфной функции w(z) и представляет собой далеко идущее обобщение ряда Тейлора.

Пусть f(z) и w(z) голоморфны в окрестности некоторой точки a\in\C, притом w(a) = 0 и a — простой нуль функции w(z). Теперь выберем некую область D\ni a, в которой f и w голоморфны, а w однолистна в \overline{D}. Тогда имеет место разложение вида:

f(z)=\sum_{n=0}^\infty d_n w^n(z),

где коэффициенты dn вычисляются по следующему выражению:

d_n=\frac{1}{2\pi i}\int\limits_{\partial D}\frac{f(\zeta)w'(\zeta)}{w^{n+1}(\zeta)}\,d\zeta=\frac{1}{n!}\lim_{z\to a}\frac{d^{n-1}}{dz^{n-1}}\left\{f'(z)\frac{(z-a)^n}{w^n(z)}\right\}.

Теорема об обращении рядов

Частным случаем применения рядов является так называемая задача об обращении ряда Тейлора.

Рассмотрим разложение вида w=\sum_{n=1}^\infty c_nz^n. Попытаемся с помощью полученного выражения вычислить коэффициенты ряда z=\sum_{n=1}^\infty d_nw^n:

d_n=\frac{1}{n!}\lim_{z\to 0}\frac{d^{n-1}}{dz^{n-1}}\left(\frac{z}{w}\right)^n.

Литература

  • Шабат Б. В. Введение в комплексный анализ. — М.: Наука. — 1969, 577 стр.

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "Ряд Бюрмана — Лагранжа" в других словарях:

  • Ряд Бюрмана-Лагранжа — определяется как разложение аналитической функции f(z) по степеням другой аналитической функции w(z) и представляет собой далеко идущее обобщение ряда Тейлора. Пусть f(z) и w(z) аналитичны в окрестности некоторой точки , притом w(a) = 0 и a… …   Википедия

  • Ряд Бурмана — Лагранжа — Ряд Бюрмана Лагранжа определяется как разложение аналитической функции f(z) по степеням другой аналитической функции w(z) и представляет собой далеко идущее обобщение ряда Тейлора. Пусть f(z) и w(z) аналитичны в окрестности некоторой точки ,… …   Википедия

  • БЮРМАНА - ЛАГРАНЖА РЯД — ряд Лагранжа, степенной ряд, полностью решающий задачу локального обращения голоморфных функций. Именно, пусть функция комплексного переменного z регулярна в окрестности точки , причем и . Тогда в нек рой окрестности точки плоскости определена… …   Математическая энциклопедия

  • ЛАГРАНЖА РЯД — степенной ряд, дающий решение задачи локального обращения голоморфной функции комплексного переменного. Первоначальное решение задачи обращения, данное Ж. Лагранжем (J. Lagrange, 1770), было затем усовершенствовано А. Бюрманом (H. Burmann, 1779) …   Математическая энциклопедия

  • Теорема Лагранжа об обращении рядов — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Пусть функция …   Википедия

  • СТЕПЕННОЙ РЯД — 1)С. р. по одному комплексному переменному z функциональный ряд вида где a центр ряда, bk его коэффициенты, bk(z a)k члены ряда. Существует число r, называемое радиусом сходимости С. р. (1) и определяемое по формуле Коши Адамара такое, что при |z …   Математическая энциклопедия

  • ОБРАЩЕНИЕ РЯДА — получение по известному степенному ряду ряда для обратной функции в виде где Ряд (2) наз. также О. р. (1), или рядом Лагранжа. Более общая задача о получении разложения произвольной сложной аналнтич. функции F[j(w)]решается Бюрмана Лагранжа рядом …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»