МОДУЛЯРНАЯ ФУНКЦИЯ

МОДУЛЯРНАЯ ФУНКЦИЯ

эллиптическая модулярная функция, одного комплексного переменного - автоморфная функция комплексного переменного ассоциированная с группой Г всех дробно-линейных преобразований вида

где - целые действительные числа (эта группа наз. модулярной). Преобразования группы Г переводят действительную ось в себя, и областью определения М. ф. можно считать верхнюю полуплоскость Группа Г порождается двумя образующими . Фундаментальная область G модулярной группы изображена на рис. 1;

это - криволинейный четырехугольник ABCDА с вершинами , , , две стороны к-рого А В и D А- отрезки прямых со ответственно a BD- дуга окружности . Участки границы АВ и ВС включаются в G,a CD и DA не включаются. Образы области Gпри всевозможных отображениях группы Г покрывают всю полуплоскость без пересечений.

Изучение М. ф. началось в 19 в. в связи с изучением эллиптич. функций и предшествовало появлению общей теории автоморфных функций. В теории М. ф. в качестве основных модулярных форм используются следующие тета-ряды:

где , а звездочка означает, что нулевая пара ( т 1 , т 2 )=(0, 0) отбрасывается. Согласно терминологии К. Вейерштрасса (К. Weierstrass) это - относительные инварианты, играющие важную роль в его теории эллиптич. функций (см. Вейер штрасса эллиптические функции), а А наз. также дискриминантом. С точки зрения теории автоморфных функций это - автоморфные формы соответственно веса 2, 3 и 6, ассоциированные с модулярной группой. Основная М. ф. имеет вид

Функция J(z) наз. также абсолютным инвариантом. Она регулярна в верхней полуплоскости, а внутри фундаментальной области Gпринимает каждое конечное значение, кроме 0 и 1, в точности один раз; кроме того,

В теории эллиптич. функций М. ф. J(z) играет важную роль, позволяя по заданным вейерштрассовым относительным инвариантам определить периоды а следовательно, и построить все эллиптич. функции Вейерштрасса. Если t - единственное в фундаментальной области решение уравнения то при имеем при а=0 имеем и определяется из уравнения

при b=0 имеем t=i, и w1 определяется из уравнения

Для построения Якоби эллиптических функций удобнее, вместо J(z), функция

также называемая М. ф. На самом деле l(z). является автоморфной функцией только относительно подгруппы Г 2 модулярной группы Г, причем к Г 2 относятся все те преобразования вида (1), у к-рых (в качестве дополнительного условия) aи d- нечетные числа, bи с - четные. Фундаментальная область G2 группы Г 2 изображена на рис. 2;

это - криволинейный четырехугольник ABOCA с вершинами A(оо), В(-1), 0, С(1),две стороны к-рого АВ и СА- отрезки прямых соответственно х=-1 и х=1, а ВО и ОС- дуги окружностей соответственно и Участки границы слева от мнимой оси включаются в G2, а ОС и СА не включаются. Функция l(z) также регулярна в верхней полуплоскости Im z>0. Внутри области G2 она принимает каждое конечное значение, кроме 0 и 1, в точности один раз; кроме того, При заданном модуле эллиптич. функций Якоби кдля их построения необходима величина t=w3 / w1. или к-рая однозначно определяется из уравнения . Практически, в нормальном случае 0<k<1 определяют сначала где а затем строят решение этого уравнения в виде ряда М. ф.связаны формулой

М. ф.дает наиболее удобное представление конформных классов римановых поверхностей эллиптич. функций, когда род g =1. и эйлерова характеристика . Каждому значению wсоответствует решение уравнения , определяющее конформный класс и соответствующее поле эллиптич. функций. Напр., w=0соответствует параллелограмм периодов в виде ромба с углами 120° и 60°, а - квадрат.

М. ф. применяются также при изучении конформных отображений, граничных свойств аналитических функций и предельных множеств. М. ф. дает конформное отображение левой половины фундаментальной области G(рис. 1), т. е. криволинейного треугольника ABCА, на верхнюю полуплоскость Im w>0, причем точки В, С, А переходят соответственно в 0, 1, . М. ф.отображает конформно криволинейный треугольник АВОА (рис. 2) на верхнюю полуплоскость, причем точки В, О, А переходят соответственно в

В геометрич. вопросах часто удобнее принять за область определения М. ф. единичный круг. При этом модулярная группа (1) переходит в модулярную группу автоморфизмов единичного круга. Напр., удобно применить дробно-линейное преобразование

переводящее верхнюю полуплоскость Im z>0 в единичный круг причем точки переходят соответственно в точки на единичной окружности (рис. 3). Тогда сложная функция есть М. ф., регулярная в единичном круге и принимающая в нем все значения, кроме 0, 1, оо. Она отображает конформно криволинейный треугольник ABCА (рис. 3)

на верхнюю полуплоскость Im z>0. Именно эта М. ф.используется при доказательстве Пикара теорем и в ряде других геометрических вопросов.

Лит.:[1] Гурвиц А., Курант Р., Теория функций, пер. [с нем.], М., 1968; [2] Ахиезер Н. И., Элементы теории эллиптических функций, 2 изд., М., 1970; [3] Форд Р., Автоморфные функции, пер. с англ., М.- Л., 1936; [4] Кlein F., Рriсke R., Vorlesungen uber die Theorie der elliptischen Modulfunktionen, Bd 1-2, Lpz., 1890-92. E. Д. Соломенцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "МОДУЛЯРНАЯ ФУНКЦИЯ" в других словарях:

  • Модулярная функция — Модулярная функция  голоморфная функция, определённая на верхней комплексной полуплоскости (то есть множества ), является инвариантной относительно превращений модулярной группы или некоторой её подгруппы и удовлетворяет условия… …   Википедия

  • Функция Вебера (значения) — Функция Вебера: Функции параболического цилиндра Функция Вебера Модулярная функция Вебера …   Википедия

  • МОДУЛЯРНАЯ КРИВАЯ — полная алгебраич. кривая , униформизуемая подгруппой конечного индекса модулярной группы Г; точнее, М. к. есть полная алгебраич. кривая, получаемая из факторпро странства , где Н верхняя полуплоскость, присоединением конечного числа параболич.… …   Математическая энциклопедия

  • МОДУЛЯРНАЯ ФОРМА — одного комплексного переменного, эллиптическая модулярная форм а, функция на верхней полуплоскости , удовлетворяющая при нек ром фиксированном кусловию автоморфности: для любого элемента группы целочисленных матриц с определителем , и такая, что… …   Математическая энциклопедия

  • АВТОМОРФНАЯ ФУНКЦИЯ — мероморфная функция нескольких комплексных переменных, инвариантная относительно некоторой дискретной группы Г аналитич. реобразований данного комплексного многообразия М: Часто под А. ф. понимают лишь функции, определенные в ограниченной связной …   Математическая энциклопедия

  • ВЕИЕРШТРАССА ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ — ф>тнкции, положенные К. Вейерштрассом в основу его общей теории эллиптических функций, излагавшейся им с 1862 на лекциях в Берлинском университете (см. [1], [2]). В отличие от более раннего построения теории эллиптич. функций, связанного с… …   Математическая энциклопедия

  • Список математических функций — Эта страница информационный список. В математике, многие функции и группы функций настолько важны, что заслужили право на собственные имена. Ниже приведён список статей, которые содержат подробные описания некоторых из таких функций …   Википедия

  • ДРОБНО-ЛИНЕЙНОЕ ОТОБРАЖЕНИЕ — дробно линейное преобразование, отображение комплексного пространства С >С n, осуществляемое дробно линейными функциями. В случае комплексной плоскости С 1=С это отличное от константы отображение вида где ad bс неравно 0;часто применяется… …   Математическая энциклопедия

  • ЭЛЛИПТИЧЕСКАЯ КРИВАЯ — неособая полная алгебраическая кривая рода 1. Теория Э. к. является истоком большей части современной алгебраич. геометрии. Но исторически теория Э. к. возникла как часть анализа, как теория эллиптических интегралов и эллиптических функций.… …   Математическая энциклопедия

  • ЛАНДАУ ТЕОРЕМЫ — теоремы для регулярных в круге функций, устанавливающие нек рые связи между геометрич. свойствами производимого этими функциями конформного отображения и начальными коэффициентами представляющих их степенных рядов. В 1904 Э. Ландау показал [1],… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»