ЛИНДЕЛЁФА ТЕОРЕМА

ЛИНДЕЛЁФА ТЕОРЕМА

об асимптотических значениях: 1) Пусть w=f(z) - ограниченная регулярная аналитич. функция в единичном круге и пусть a - асимптотич. значение f(z) вдоль жорданового пути L, расположенного в Dи оканчивающегося в точке когда вдоль L. Тогда а есть угловое предельное значение функции f(z) в точке т. е. f(z) равномерно стремится к a, когда внутри любого угла с вершиной образованного двумя хордами круга

Эта Л. т. верна и в областях Dдругих типов, причем условия на f(z) удается значительно расширить. Достаточно, напр., потребовать, чтобы f(z) была мероморфной функцией в D, не принимающей трех различных значений. Л. т. обобщается также для функций f(z) многих комплексных переменных, z=(z1, ..., zn). Напр., если f(z) - ограниченная голоморфная функция в шаре имеющая асимптотич. значение авдоль некасательного пути Lв точке то а есть некасательное предельное значение f(z) в точке z (см. [4]).

2) Пусть w=f(z) - ограниченная регулярная аналитич. функция в круге имеющая вдоль двух различных путей L1 и L2, оканчивающихся в точке , асимптотич. значения Тогда и равномерно внутри угла между путями L1 и L2. Эта Л. т. верна и для областей Dдругих типов.

Для неограниченных функций она, вообще говоря, неверна.

Л. т. найдены Э. Линделёфом [1].

Лит.:[1] Lindelof E., "Acta Soc. sclent, fennica", 1915, t. 46, № 4; [2] Г о л у з и н Г. М., Геометрическая теория функций комплексного переменного, 2 изд., М., 1966; [3] Коллингвуд Э. Ф., Ловатер А. Д ж., Теория предельных множеств, пер. с англ., М., 1971; [4] X е н к и н Г. М., Чирка Е. М., в кн.: Итоги науки и техники. Современные проблемы математики, т. 4, М., 1975, с. 13-142.

Е. Д. Соломенцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "ЛИНДЕЛЁФА ТЕОРЕМА" в других словарях:

  • Теорема Линделёфа — Теорема Линделёфа: Теорема Линделёфа (комплексный анализ) Теорема Линделёфа о многограннике …   Википедия

  • ФРАГМЕНА - ЛИНДЕЛЁФА ТЕОРЕМА — обобщение максимума модуля принципа аналитич. функций на случай функций, априори заданных как неограниченные; впервые в простейшей форме дано Э. Фрагмеyом и Э. Линделёфом [1]. Пусть f(z) регулярная аналитич. ция комплексного переменного zв… …   Математическая энциклопедия

  • Теорема Линделёфа о многограннике — У этого термина существуют и другие значения, см. Теорема Линделёфа. Теорема Линделёфа о многограннике наименьшей площади при заданном объёме  геометрическая теорема, впервые доказанная Лоренсом Линделёфом в 1869 году .[1]. Может быть… …   Википедия

  • Теорема Линделёфа (комплексный анализ) — У этого термина существуют и другие значения, см. Теорема Линделёфа. Теорема Если и   области, ограниченные гладкими жордановыми кривыми, а функция аналитична в и осуществляет конформное отображение …   Википедия

  • Теорема Минковского о многогранниках — общее название двух теорем о существовании и единственности замкнутого выпуклого многогранника с заданными направлениями и площадями граней. Теорема единственности Минковского: Если между гранями двух замкнутых выпуклых многогранников установлено …   Википедия

  • Теорема Александрова о выпуклых многогранниках — геометрическая теорема о единственности замкнутого выпуклого многогранника с заданными направлениями граней, доказанная А.Д. Александровым в 1937 году[1],[2],[3]. Обычно её формулируют так: Теорема Александрова о выпуклых многогранниках: Если… …   Википедия

  • Теорема Эйлера для многогранников —   теорема, устанавливающая связь между числом вершин, рёбер и граней для многогранников, топологически эквивалентных сфере. Содержание 1 Формулировка 2 История 3 См. также …   Википедия

  • Теорема Бликера — Из развёртки выпуклого многогранника с треугольными гранями всегда можно сложить невыпуклый многогранник с большим объёмом. Теорема доказана Дэвидом Бликером (англ. David Dudley Bleecker) в 1996 г. Ссылки «Увеличение объёма …   Википедия

  • Теорема Люилье — о многоугольниках см. Теорема Линделёфа о многограннике. Теорема Люилье о сферическом треугольнике см. Формула Герона. Названы в честь швейцарского математика Симона Люилье …   Википедия

  • Теорема Кантора — Бендиксона — Всякое множество вещественных чисел есть объединение совершенного множества своих точек конденсации и счётного множества. Обобщена на случай подмножеств метрического пространства со счётной базой (см. теорема Линделёфа) …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»