ЛИНДЕЛЁФА ПРОСТРАНСТВО

ЛИНДЕЛЁФА ПРОСТРАНСТВО

финально компактное пространство, - топологическое пространство Xтакое, что всякое его открытое покрытие содержит счетное подпокрытие. Напр., всякое пространство со счетной базой есть Л. п.; всякое квазикомпактное пространство есть Л. п. Всякое замкнутое подпространство Л. п. есть Л. п. Для каждого непрерывного отображения f Л. п. в топологич. пространство X' подпространство f(X').последнего - Л. п. Всякое отделимое пространство, являющееся объединением счетного семейства (би)компактных множеств, - Л. п. Всякое регулярное Л. п. паракомпактно. Произведение Л. п. и (би)компактного пространства есть Л. П. М. И. Войцеховский.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать реферат

Смотреть что такое "ЛИНДЕЛЁФА ПРОСТРАНСТВО" в других словарях:

  • ПРОСТРАНСТВО ОТОБРАЖЕНИИ — топологическое множество Fотображений множества Xвтопологич. пространство Yс какой нибудь естественной топологией Тна F. При фиксированных множестве Xи пространстве Y получаются различные П. о. в зависимости от того, какие отображения включаются… …   Математическая энциклопедия

  • МЕТРИЗУЕМОЕ ПРОСТРАНСТВО — пространство, топология к рого порождается иек рой метрикой по правилу: точка принадлежит замыканию множества в том и только в том случае, если она лежит на нулевом расстоянии от этого множества. Если такая метрика существует, то она не… …   Математическая энциклопедия

  • ПАРАКОМПАКТНОЕ ПРОСТРАНСТВО — топологическое пространство, в любое открытое покрытие к рого можно вписать локально конечное открытое покрытие. (Семейство g множеств, лежащих в топологич. пространстве X, наз. локально конечным в X, если у каждой точки существует окрестность в… …   Математическая энциклопедия

  • Число Линделёфа — один из кардиналов, характеризующий топологическое пространство. Определяется как наименьший кардинал m, такой, что из каждого открытого покрытия пространства X можно выбрать подпокрытие мощности не больше m[1]. Обозначается как l(X). Так как в… …   Википедия

  • МЕТРИЧЕСКОЕ ПРОСТРАНСТВО — множество Xвместе с нек рой метрикойr на ном. Теоретико множественный подход к изучению фигур (пространств) основан на исследовании взаимного расположения составляющих их элементарных частей. Одной из фундаментальных характеристик взаимного… …   Математическая энциклопедия

  • Метризуемое пространство — Метризуемое пространство  топологическое пространство, гомеоморфное некоторому метрическому пространству. Иначе говоря, пространство, топология которого порождается некоторой метрикой. Если такая метрика существует, то она не… …   Википедия

  • Паракомпактное пространство — Паракомпактное пространство  топологическое пространство, в любое открытое покрытие которого можно вписать локально конечное открытое покрытие. При этом: семейство множеств, лежащих в топологическом пространстве , называется локально… …   Википедия

  • МОЩНОСТНАЯ ХАРАКТЕРИСТИКА — топологического пространства функция, сопоставляющая этому пространству бесконечное кардинальное число и принимающая одинаковые значения на гомеоморфных пространствах. М. х. наз. также кардинальными инвариантами. Областью определения М. х. может… …   Математическая энциклопедия

  • Метризируемое — Метризуемое пространство топологическое пространство, гомеоморфное некоторому метрическому пространству. Иначе говоря, пространство, топология которого порождается некоторой метрикой. Если такая метрика существует, то она не единственна за… …   Википедия

  • Тессеракт — Диаграмма Шлегеля для тессеракта. Изображена проекция (перспектива) четырёхмерного куба на трёхмерное пространство …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»