КЭЛИ - ДИКСОНА АЛГЕБРА

КЭЛИ - ДИКСОНА АЛГЕБРА

- альтернативная 8-мерная алгебра, получающаяся из алгебры обобщенных кватернионов применением процесса Кэл и- Диксона. Этот процесс заключается в построении по заданной алгебре Ановой алгебры А 1 (удвоенной размерности) и является обобщением процесса удвоения (см. Гиперкомплексное число). А именно, пусть А- алгебра с единицей 1 над нолем F,d - некоторый ненулевой элемент из Fи задано F-линейное отображение являющееся инволюцией, причем

На прямой сумме линейных пространств формулой определяется умножение, превращающее А 1 в алгебру. Алгебра Авкладывается в А 1 в качестве подалгебры: и инволюция * продолжается до инволюции в А 1:

При этом

Процесс перехода от алгебры Ак алгебре А 1 можно продолжить, получая возрастающую цепочку алгебр параметр d на каждом шаге может меняться. Если процесс Кэли - Диксона начинается с алгебры Ас базисом {1, и},таблицей умножения

и инволюцией: то после первого шага получится алгебра A1 обобщенных кватернионов (ассоциативная алгебра размерности 4), а на втором шаге - алгебра А 2 размерности 8, к-рая и наз. К э л и-Д и к с о н а алгеброй.

Любая К.- Д. а. является альтернативной, но не ассоциативной центральной простой алгеброй над F;обратно, простое альтернативное кольцо либо ассоциативно, либо является К.- Д. а. над своим центром. Определенная на К.-Д. а. квадратичная форма (х).от восьми переменных, соответствующих базису алгебры, обладает мультипликативным свойством:

Тем самым устанавливается связь между К.- Д. а. и проблемой существования композиции для квадратичных форм. К.- Д. а. является алгеброй с делением тогда и только тогда, когда квадратичная форма (х).(норма э л е м е н т а х).не представляет нуля в F. Если характеристика поля Fотлична от 2, то К.- Д. а. обладает базисом с таблицей умножения вида

где а инволюция определяется условиями

Эта алгебра обозначается Алгебры и изоморфны тогда и только тогда, когда эквивалентны отвечающие им квадратичные формы (х). Если (х).представляет нуль, то соответствующая К.- Д. а. изоморфна А(-1, 1, 1). Алгебра (-1, 1, 1) наз. расщепляемой алгеброй К э л и, или векторно-матричной алгеброй. Ее элементы могут быть представлены матрицами вида

где - трехмерное пространство над Fс обычными операциями скалярного произведения и векторного произведения Умножение этих матриц задается формулой

Если - поле действительных чисел, то A (1, 1, 1) - алгебра Кэли чисел (она является алгеброй с делением). Любая К.- Д. а. над изоморфна либо А(1,1, 1), либо А(-1, 1, 1). Построение К.- Д. а. над произвольным полем принадлежит Л. Диксону (L. Dickson), к-рый изучил также их основные свойства (см. [1], [2]). Пусть А- альтернативное кольцо, ассоциативно-коммутативный центр Ск-рого отличен от нуля и не содержит делителей нуля, a F - поле частных кольца С. Тогда имеется естественное вложение Если есть К.- Д. а. над F, то Аназ. кольцом Кэли - Диксона.

Лит.:[1] Д и к с о н Л. Э., Линейные алгебры, пер. с англ., Харьков, 1935; [2] Schafer R. D., An introduction, to nonassociative algebras, N. Y., 1966; [3] Ж е в л а к о в К. А., Слинько А. М., Шестаков И. П., Ширшов А. И., Кольца, близкие к ассоциативным, М., 1978. Е. Н. Кузьмин.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "КЭЛИ - ДИКСОНА АЛГЕБРА" в других словарях:

  • АЛГЕБРА С ДЕЛЕНИЕМ — алгебра Анад полем F, для любых элементов и bк рой уравнения разрешимы в А. Ассоциативная А. с д., рассматриваемая как кольцо, является телом, а ее центр С полем и Если то А. с д. Аназ. центральной А. с д. Конечномерные центральные ассоциативные… …   Математическая энциклопедия

  • КЭЛИ ЧИСЛО — гиперкомплексное число, а именно, элемент 8 мерной алгебры над полем действительных чисел (алгебры Кэли), впервые рассмотренной А. Кэли (A. Cayley). Алгебра Кэли может быть получена применением процесса Кэли Диксона из алгебры кватернионов (см.… …   Математическая энциклопедия

  • Алгебра Кэли — Алгебра Кэли  система гиперкомплексных чисел, 8 мерная алгебра над полем вещественных чисел. Обычно обозначается , поскольку её элементы (числа Кэли) называются иногда октонионами или …   Википедия

  • ЛИ ОСОБАЯ АЛГЕБРА — простая алгебра Ли (см. Ли полупростая алгебра), не являющаяся классической. Над алгебраически замкнутым полем нулевой характеристики существует всего 5 Ли о. а.: Е 6, Е 7, E8, F4 н G2 размерностей 78, 133, 248, 52 и 14 соответственно. Индексы в… …   Математическая энциклопедия

  • ЙОРДАНОВА АЛГЕБРА — алгебра, в к рой справедливы тождества 4 Такие алгебры впервые возникли в работе П. Йордана [1], посвященной аксиоматизации основ квантовой механики (см. также [2]), а затем нашли применения в алгебре, анализе и геометрии. Пусть А ассоциативная… …   Математическая энциклопедия

  • ТЕЛО — кольцо, в к ром уравнения ах=b и уа=b, где однозначно разрешимы. В случае ассоциативного кольца достаточно потребовать существования единицы 1 и однозначной разрешимости уравнений ах=1 и уа=1 для любого Коммутативное ассоциативное Т. является… …   Математическая энциклопедия

  • АРТИНОВО КОЛЬЦО — артипово справа кольцо, кольцо, удовлетворяющее условию минимальности для правых идеалов, т. е. кольцо, в к ром любое непустое частично упорядоченное по включению множество Мправых идеалов имеет минимальный элемент (см. [1]) такой правый идеал из …   Математическая энциклопедия

  • НЕАССОЦИАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — множества с доумя бинарными операциями + и ., удовлетворяющими всем аксиомам ассоциативных колец и алгебр, кроме, быть может, аксиомы ассоциативности умножения. Первые примеры неассоциативных колец (Н. к.) и неассоциативных алгебр (Н. а.), не… …   Математическая энциклопедия

  • АЛЬТЕРНАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — Альтернативным кольцом (А. к.) наз. кольцо, в к ром каждые два элемента порождают ассоциативное подкольцо; альтернативной алгеброй (А. а.) наз. линейная алгебра, являющаяся А. к. Согласно теореме Артина класс всех А. к. задается системой тождеств …   Математическая энциклопедия

  • Бикватернион — Бикватернионы комплексификация (расширение) обычных (вещественных) кватернионов. Содержание …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»