ГРОТЕНДИКА ФУНКТОР


ГРОТЕНДИКА ФУНКТОР

функтор вложения (см. Вложение категорий).из категории Св категорию контравариантных функторов, определенных на С и принимающих значения в категории множеств (Ens). Пусть X- объект [U-категории С(где U - фиксированное универсальное множество); сопоставление определяет контравариантный функтор в категорию множеств. Для любого объекта Fкатегории контравариантных функторов из Св категорию (Ens) имеет место естественная биекция При этом


(лемма Ионеда). Поэтому сопоставление определяет полное изоморфное вложение , к-рое и наз. Г. ф. С помощью Г. ф. можно вводить алгебраич. структуры на объектах категории (см. Групповой объект категории, Групповая схема).

Лит.:[1] Букур И., Деляну А., Введение в теорию категорий и функторов, пер. с англ., М., 1972; [2] Grothendieck A., Seminaire Bourbakl. 1959/1960, №195.

И. В. Долгачев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ГРОТЕНДИКА ФУНКТОР" в других словарях:

  • Функтор (математика) — У этого термина в программировании есть другое значение: «Функтор (программирование)». Все значения этого слова здесь. Функтор  это особый тип отображений между категориями, сохраняющих структуру. Их можно рассматривать как морфизмы в… …   Википедия

  • ГРОТЕНДИКА ГРУППА — аддитивной категории абелева группа, сопоставляемая аддитивной категории универсальным аддитивным отображением. Точнее, пусть С малая аддитивная категория и G абелева группа. Отображение наз. аддитивным, если для любой точной последовательности… …   Математическая энциклопедия

  • КОГОМОЛОГИИ — термин, употребляемый по отношению к функторам гомологической природы, которые, в отличие от гомологии, как правило, контравариантно зависят от объектов основной категории, на которой они определены. В отличие от гомологии, связывающие… …   Математическая энциклопедия

  • МОТИВОВ ТЕОРИЯ — обобщение различных теорий когомологий алгебраич. многообразий. М. т. систематически обобщает идею использования якобиана алгебраич. кривой Xв качестве замены когомологий в классич. теории соответствий и использовании этой теории для изучения… …   Математическая энциклопедия

  • Схема (математика) — В алгебраической геометрии схема  это абстракция, позволяющая связать единым образом коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести… …   Википедия

  • РИМАНА - РОХА ТЕОРЕМА — теорема, позволяющая выразить эйлерову характеристику c(Е). локально свободного пучка Ена алгебраическом или аналитич. многообразии Xв терминах характеристич. классов Чжэня пучка Еи многообразия X. Она может быть применена для вычисления… …   Математическая энциклопедия

  • Элементарный топос — См. также: Топос Гротендика В теории категорий элементарный топос  это категория, в некотором смысле похожая на категорию множеств. В рамках теории элементарных топосов может быть описана аксиоматика как самой теории множеств, так и… …   Википедия

  • ЛОКАЛИЗАЦИЯ — в категориях специальная конструкция, связанная со .специальными радикальными подкатегориями; она впервые появилась в абелевых категориях для описания т. н. Гротендика категорий с помощью категорий модулей над ассоциативными кольцами с единицей.… …   Математическая энциклопедия

  • ПУЧКОВ ТЕОРИЯ — специальный математич. аппарат, обеспечивающий единый подход для установления связи между локальными и глобальными свойствами топологич. пространств (в частности, геометрич. объектов) и являющийся мощным средством исследования многих задач в… …   Математическая энциклопедия

  • ПИКАРА СХЕМА — естественное обобщение в рамках теории схем понятия Пикара многообразия гладкого алгебраич. многообразий X. Для определения П. с. произвольной S схемы Храссматривается относительный функтор Пикара PicX/S на категории Sch/S схем над схемой S.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.