Приближение и интерполирование функций

Приближение и интерполирование функций
        раздел теории функций, посвященный изучению вопросов приближённого представления функций.
         Приближение функций — нахождение для данной функции f функции g из некоторого определённого класса (например, среди алгебраических многочленов заданной степени), в том или ином смысле близкой к f, дающей её приближённое представление. Существует много разных вариантов задачи о приближении функций в зависимости от того, какие функции используются для приближения, как ищется приближающая функция g, как понимается близость функций f и g. Интерполирование функций — частный случай задачи приближения, когда требуется, чтобы в определённых точках (узлах интерполирования) совпадали значения функции f и приближающей её функции g, а в более общем случае — и значения некоторых их производных.
         Для оценки близости исходной функции f и приближающей её функции g используются в зависимости от рассматриваемой задачи метрики (См. Метрика) различных функциональных пространств. Обычно это метрики пространств непрерывных функций С и функций, интегрируемых с р-й степенью, Lp, р 1, в которых расстояние между функциями f и g определяется (для функций, заданных на отрезке [а, b]) по формулам
         и
        и
        
         Наиболее часто встречающейся и хорошо изученной является задача о приближении функций полиномами, т. е. выражениями вида
         akφk (x),
        где (φ1,..., φn—заданные функции, a a1,..., an произвольные числа. Обычно это алгебраические многочлены
         akxk
        или тригонометрические полиномы
         а0 + ak coskx + bk sinkx).
         Рассматриваются также полиномы по ортогональным многочленам (См. Ортогональные многочлены), по собственным функциям краевых задач и т.п. Другим классическим средством приближения являются рациональные дроби P (x)/Q (x), где в качестве Р и Q берутся алгебраические многочлены заданной степени.
         В последнее время (60—70-е гг. 20 в.) значительное развитие получило приближение т. н. сплайн-функциями (сплайнами). Характерным их примером являются кубические сплайн-функции, определяемые следующим образом. Отрезок [a, b] разбивается точками a = x0 < x1 <... < xn = b, на каждом отрезке [xk, xk+1] кубическая сплайн-функция является алгебраическим многочленом третьей степени, причём эти многочлены подобраны так, что на всём отрезке [а, b] непрерывны сама сплайн-функция и её первая и вторая производные. Оставшиеся свободными параметры могут быть использованы, например, для того чтобы сплайн-функция интерполировала в узлах xk приближаемую функцию. Улучшение приближения достигается за счёт увеличения числа узлов xk правильного их расположения на отрезке [а, b]. Сплайн-функции оказались удобными в вычислительной математике, с их помощью удалось решить также некоторые задачи теории функций.
         Приближённые представления функций, а также сами функции на основе их приближённых представлений изучает теория приближений функций (употребляются также названия теория аппроксимации функций и конструктивная теория функций). К теории приближений функций обычно относят также задачи о приближении элементов в банаховых и общих метрических пространствах.
         Теория приближений функций берёт начало от работ П. Л. Чебышева. Он ввёл одно из основных понятий теории — понятие наилучшего приближения функции полиномами и получил ряд результатов о наилучших приближениях. Наилучшим приближением непрерывной функции f (x) полиномами akφk (x) в метрике С называется величина
         En(f)c = min || f - kφk (x)||c,
        где минимум берётся по всем числам а1,..., an. Полином, для которого достигается этот минимум, называется полиномом наилучшего приближения (для других метрик определения аналогичны). Чебышев установил, что наилучшее приближение функции xn+1 на отрезке [—1, 1] в метрике С алгебраическими многочленами степени n равно 1/2n, а многочлен наилучшего приближения таков, что для него
         xn+1 - n) cos (n + 1) arccosx.
         Следующая теорема Чебышева указывает характеристическое свойство полиномов наилучшего приближения в пространстве непрерывных функций: алгебраический многочлен f в метрике С [—1, 1], если существуют n + 2 точки -1 ≤ x1 < x2 <... < xn+2 ≤ 1, в которых разность f (x)2
         Одним из первых результатов теории приближений является также теорема Вейерштрасса, согласно которой каждую непрерывную функцию можно приблизить в метрике С как угодно хорошо алгебраическими многочленами достаточно высокой степени.
         С начала 20 в. началось систематическое исследование поведения при n → ∞ последовательности En(f) наилучших приближений функции f алгебраическими (или тригонометрическими) многочленами. С одной стороны, выясняется скорость стремления к нулю величин En(f) в зависимости от свойств функции (т. н. прямые теоремы теории приближений), а с другой — изучаются свойства функции по последовательности её наилучших приближений (обратные теоремы теории приближений). В ряде важных случаев здесь получена полная характеристика свойств функций. Приведём две такие теоремы.
         Для того чтобы функция f была аналитической на отрезке (т. е. в каждой точке этого отрезка представлялась степенным рядом, равномерно сходящимся к ней в некоторой окрестности этой точки), необходимо и достаточно, чтобы для последовательности её наилучших приближений алгебраическими многочленами выполнялась оценка
         En(f)c Aq n,
        где q < 1 и А — некоторые положительные числа, не зависящие от n (теорема С. Н. Бернштейна).
         Для того чтобы функция f периода 2π имела производную порядка r, r = 0, 1,2,..., удовлетворяющую условию
         |f (r)(x + h) - f (r)(x)| ≤ M|h|α,
        0 < α < 1, М — некоторое положительное число, или условию
         |f (r)(x + h) - 2f (r)(x) + f (r)(x - h)| ≤ M|h|α
        (в этом случае α = 1), необходимо и достаточно, чтобы для наилучших приближений функции f тригонометрическими полиномами была справедлива оценка
         Еп (f)c А/n r+α,
        где А — некоторое положительное число, не зависящее от n. В этом утверждении прямая теорема была в основном получена Д. Джексоном (США), а обратная является результатом исследований С. Н. Бернштейна, Ш. Ж. Ла Валле Пуссена и А. Зигмунда (США). Характеристика подобных классов функций, заданных на отрезке, в терминах наилучших приближении алгебраическими многочленами оказалась невозможной. Её удалось получить, привлекая к рассмотрению приближение функций с улучшением порядка приближения вблизи концов отрезка.
         Возможность характеризовать классы функций с помощью приближений их полиномами нашла приложение в ряде вопросов математического анализа. Развивая исследования по наилучшим приближениям функций многих переменных полиномами, С. М. Никольский построил теорию вложений важных для анализа классов дифференцируемых функций многих переменных, в которой имеют место не только прямые, но и полностью обращающие их обратные теоремы.
         Для приближений в метрике L2 полином наилучшего приближения может быть легко построен. Для других пространств нахождение полиномов наилучшего приближения является трудной задачей и её удаётся решить только в отдельных случаях. Это привело к разработке разного рода алгоритмов для приближённого нахождения полиномов наилучшего приближения.
         Трудность нахождения полиномов наилучшего приближения отчасти объясняется тем, что оператор, сопоставляющий каждой функции её полином наилучшего приближения, не является линейным: полином наилучшего приближения для суммы f + g не обязательно равен сумме полиномов наилучшего приближения функций f и g. Поэтому возникла задача изучения (по возможности простых) линейных операторов, сопоставляющих каждой функции полином, дающий хорошее приближение. Например, для периодической функции f (x) можно брать частные суммы её ряда Фурье Sn (f, х). При этом справедлива оценка (теорема А. Лебега)
         ||f - Sn (f)||c ≤ (Ln + 1) En(f)c,
        где Ln числа, растущие при n ∞ как (4/π2) lnn. Они получили название констант Лебега. Эта оценка показывает, что полиномы Sn(f) доставляют приближение, не очень сильно отличающееся от наилучшего. Подобная оценка имеет место и для приближений интерполяционными тригонометрическими полиномами с равноотстоящими узлами интерполирования, а также для приближений интерполяционными алгебраическими многочленами на отрезке [-1, 1] с узлами , k = 1, 2,..., n, т. е. в нулях полинома Чебышева cosn arccosx. Для основных встречающихся в анализе классов функций известны такие линейные операторы, построенные с помощью рядов Фурье или на основе интерполяционных полиномов, что значениями этих операторов являются полиномы, дающие на классе тот же порядок убывания приближений при n → ∞, что и наилучшие приближения.
         А. Н. Колмогоров начал изучение нового вопроса теории приближений — задачи о нахождении при фиксированном n такой системы функций φ1,..., φn, для которой наилучшие приближения функций заданного класса полиномами
         Теория приближений функций является одним из наиболее интенсивно разрабатываемых направлений в теории функций. Идеи и методы теории приближений являются отправной точкой исследования в ряде вопросов вычислительной математики. С 1968 в США издаётся специализированный журнал «Journal of Approximation Theory».
        
         Лит.: Монографии. Ахиезер Н. И., Лекции по теории аппроксимации, 2 изд., М., 1965; Гончаров В. Л., Теория интерполирования и приближения функций, 2 изд., М., 1954; Натансон И. П., Конструктивная теория функций, М. — Л., 1949; Никольский С. М., Приближение функций многих переменных и теоремы вложения, М., 1969; Тиман А. Ф., Теория приближения функций действительного переменного, М., 1960.
         Обзоры. Математика в СССР за тридцать лет. 1917—1947, М. — Л., 1948, с. 288—318; Математика в СССР за сорок лет. 1917—1957, т. 1, М., 1959, с. 295—379; История отечественной математики, т. 3, К., 1968, с. 568—588.
         С. А. Теляковский.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "Приближение и интерполирование функций" в других словарях:

  • Функций теория —         раздел математики, в котором изучаются общие свойства функций (См. Функции). Ф. т. распадается на две части: теория функций действительного переменного и теория функций комплексного переменного.          В «классическом» математическом… …   Большая советская энциклопедия

  • Наилучшее приближение —         важное понятие теории приближения функций. Пусть f (x) произвольная непрерывная функция, заданная на некотором отрезке [а, b], a φ1(x), φ2(x),..., φn (x) фиксированная система непрерывных функций на том же отрезке. Тогда максимум… …   Большая советская энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ — замена по определенному правилу функции f(t).близкой к ней в том или ином смысле функцией j(t). из заранее фиксированного множества (приближающего множества). Предполагается, что функция f определена на том множестве Qm мерного евклидова… …   Математическая энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ — случай многих действительных переменных случай, когда приближаемая функция f зависит от двух и большего числа переменных: (см. Приближение функций). По сравнению с одномерным случаем исследование вопросов приближения функций т(т 2) переменных… …   Математическая энциклопедия

  • ИНТЕРПОЛИРОВАНИЕ — в вычислительной математике способ приближенного или точного нахождения какой либо величины по известным отдельным значениям этой же или других величин, связанных с ней. На основе И. построен ряд приближенных методов решения математич. задач.… …   Математическая энциклопедия

  • Интерполирование — в математике один из важнейших способов приближенного вычисления. Задача И. заключается в том, чтобы по данным величинам некоторой функции для известных значений переменных независимых (аргументов) найти величину функции для произвольного… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Чебышев Пафнутий Львович — Чебышев (произносится Чебышёв) Пафнутий Львович [14(26).5.1821, с. Окатово Калужской губернии, ныне Калужской области, ‒ 26.11(8.12).1894, Петербург], русский математик и механик; адъюнкт (1853), с 1856 экстраординарный, с 1859 ‒ ординарный… …   Большая советская энциклопедия

  • Чебышев — (произносится Чебышёв)         Пафнутий Львович [14(26).5.1821, с. Окатово Калужской губернии, ныне Калужской области, 26.11(8.12).1894, Петербург], русский математик и механик; адъюнкт (1853), с 1856 экстраординарный, с 1859 ординарный академик… …   Большая советская энциклопедия

  • Равномерная сходимость —         важный частный случай сходимости (См. Сходимость). Последовательность функций fn (x) (n = 1, 2, ...) называется равномерно сходящейся на данном множестве к предельной функции f (x), если для каждого ε > 0 существует такое N = N (ε), что… …   Большая советская энциклопедия

  • Рациональная функция —         функция, получающаяся в результате конечного числа арифметических операций (сложения, умножения и деления) над переменным х и произвольными числами. Р. ф. имеет вид:                  где a0, a1, ..., an и b0, b1, ..., bm (a0 ≠ 0, b0(0)… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»