Наилучшее приближение это:

Наилучшее приближение
        важное понятие теории приближения функций. Пусть f (x) — произвольная непрерывная функция, заданная на некотором отрезке [а, b], a φ1(x), φ2(x),..., φn (x) — фиксированная система непрерывных функций на том же отрезке. Тогда максимум выражения:
         |f (x) — a1φ1(x) - a2φ2(x) -... - anφn (x)| (*)
        на отрезке [а, b] называется уклонением функции f (x) от полинома
         Pn (x) = a1φ1(x) + a2φ2(x) +... + anφn (x),
        а минимум уклонения для всевозможных полиномов Pn (x) (т. е. при всевозможных наборах коэффициентов a1, a2,..., an) — наилучшим приближением функции f (x) посредством системы φ1(x), φ2(x),..., φn (x); Н. п. обозначают через En (f, φ). Таким образом, Н. п. является минимумом максимума или, как говорят, минимаксом.
        Полином P*n (x, f), для которого уклонение от функции f (x) равно Н. п. (такой полином всегда существует), называется полиномом, наименее уклоняющимся от функции f (x) (на отрезке [а, b]).
         Понятия Н. п. и полинома, наименее уклоняющегося от функции f (x), были впервые введены П. Л. Чебышевым (1854) в связи с исследованиями по теории механизмов. Можно также рассматривать Н. п., когда под уклонением функции f (x) от полинома Pn (x) понимается не максимум выражения (*), а, например,
        

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Наилучшее приближение" в других словарях:

  • НАИЛУЧШЕЕ ПРИБЛИЖЕНИЕ — функции x(t)функциями u(t)из фиксированного множества F величина где погрешность приближения (см. Прибли жения функций мера). Можно говорить о Н. п. в произвольном метрич. пространстве X, когда определяется расстоянием между элементами хи и, в… …   Математическая энциклопедия

  • НАИЛУЧШЕЕ ПРИБЛИЖЕНИЕ В СРЕДНЕМ — наилучшее приближение функции x(t)функциями u(t)из фиксированного множества F, когда мера (погрешность) приближения выражается с помощью интегральной метрики (см. Наилучшее приближение, Приближение в среднем). Н. П. Корнейчук, В. П. Моторный …   Математическая энциклопедия

  • НАИЛУЧШЕЕ ПОЛНОЕ ПРИБЛИЖЕНИЕ — наилучшее приближение функции кпеременных алгебраическими или тригонометрич. многочленами. Пусть X пространство Сили 2p периодических по каждому переменному функций непрерывных либо суммируемых со степенью на k мерном кубе периодов. Н. п. п.… …   Математическая энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ — экстремальные задачи на классах функций задачи, связанные с отысканием верхней грани погрешности приближения на фиксированном классе функций и с выбором для него наилучшего в том или ином смысле аппарата приближения. Начало исследованиям по… …   Математическая энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ — случай многих действительных переменных случай, когда приближаемая функция f зависит от двух и большего числа переменных: (см. Приближение функций). По сравнению с одномерным случаем исследование вопросов приближения функций т(т 2) переменных… …   Математическая энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ — линейные методы приближения методы приближения, определяемые линейными операторами. Если в линейном нормированном пространстве функций Xв качестве приближающего множества выбрано линейное многообразие , то любой линейный оператор U,… …   Математическая энциклопедия

  • Приближение и интерполирование функций —         раздел теории функций, посвященный изучению вопросов приближённого представления функций.          Приближение функций нахождение для данной функции f функции g из некоторого определённого класса (например, среди алгебраических… …   Большая советская энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ — прямые и обратные теоремы теоремы и неравенства, устанавливающие связь между дифференциально разностными свойствами приближаемой функции и величиной (а также поведением) погрешности приближения ее тем или иным методом. Прямые теоремы (п. т.) дают …   Математическая энциклопедия

  • Приближение функций комплексного переменного —         раздел комплексного анализа, изучающий вопросы приближённого представления (аппроксимации) функций комплексного переменного посредством аналитических функций (См. Аналитические функции) специальных классов. Центральная проблематика… …   Большая советская энциклопедия

  • ЛОКАЛЬНОЕ ПРИБЛИЖЕНИЕ ФУНКЦИИ — мера приближения (в частности, наилучшего приближения) функции f(х).на множестве рассматриваемая как функция этого множества. Основной интерес представляет поведение Л. п. ф., когда mes В нек рых случаях удается охарактеризовать в терминах Л. п.… …   Математическая энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»