Приближение функций комплексного переменного это:

Приближение функций комплексного переменного
        раздел комплексного анализа, изучающий вопросы приближённого представления (аппроксимации) функций комплексного переменного посредством аналитических функций (См. Аналитические функции) специальных классов. Центральная проблематика относится к приближению функций полиномами и рациональными функциями. Основными являются задачи о возможности приближения, скорости приближения и аппроксимационных свойствах различных способов представления функций (интерполяционных последовательностей и рядов, рядов по ортогональным полиномам и полиномам Фабера, разложений в непрерывные дроби и т.п.). Теория приближений тесно связана с др. разделами комплексного анализа (теорией конформных отображений, интегральными представлениями, теорией потенциала и др.); многие теоремы, формулируемые в терминах теории приближений, являются, по существу, глубокими результатами о свойствах аналитических функций и природе аналитичности.
         Одним из первых результатов о полиномиальной аппроксимации является теорема Рунге, согласно которой любая функция, голоморфная в односвязной области плоскости комплексного переменного z, может быть равномерно аппроксимирована на компактных подмножествах (см. Компактность) этой области посредством полиномов от z. Общая задача о возможности равномерного приближения полиномами ставится так: для каких компактов К в комплексной плоскости любая функция f, непрерывная на К и голоморфная на множестве внутренних точек К, допускает равномерную аппроксимацию на К (с любой степенью точности) посредством полиномов от z. Необходимым и достаточным условием возможности такой аппроксимации является связность дополнения компакта К. Эта теорема для компактов без внутренних точек была доказана М. А. Лаврентьевым (1934), для замкнутых областей — М. В. Келдышем (1945) и в общем случае — С. Н. Мергеляном (1951).
         Пусть Еп = En (f, K) наилучшее приближение функции f на компакте К посредством полиномов от z степени не выше n (в равномерной метрике). Если К — компакт со связным дополнением и функция f голоморфна на К, то последовательность {Еп} стремится к нулю быстрее некоторой геометрической прогрессии: En < qn, 0 < q = q < 1 (n > N). Если f непрерывна на К и голоморфна во внутренних точках К, то скорость её полиномиальной аппроксимации зависит как от свойств f на границе К (модуль непрерывности, дифференцируемость), так и от геометрических свойств границы К.
         Другие направления исследований — равномерные и наилучшие приближения рациональными функциями, приближения целыми функциями, весовые приближения полиномами, приближения полиномами и рациональными функциями в интегральных метриках. Большое внимание уделяется проблематике, связанной с приближением функций нескольких комплексных переменных.
         Лит.: Уолш Д.-Л., Интерполяция и аппроксимация рациональными функциями в комплексной области, пер. с англ., М,, 1961; Маркушевич А. И., Теория аналитических функций, т. 2, М., 1968; Смирнов В. И.. Лебедев Н. А., Конструктивная теория функций комплексного переменного, М. — Л., 1964; Мергелян С. Н., Приближения функций комплексного переменного. в кн.: Математика в СССР за сорок лет. 1917—1957, т. 1, М., 1959, с. 383-98; Гончар А. А., Мергелян С. Н., Теория приближений функций комплексного переменного, в кн.: История отечественной математики, т. 4, кн. 1, К,, 1970, с. 112—78.
         А. А. Гончар.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Приближение функций комплексного переменного" в других словарях:

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО — раздел комплексного анализа, изучающий вопросы приближенного представления (аппроксимации) функций комплексного переменного посредством аналитич. ций специальных классов. Основными в теории П. ф. к. п. являются задачи о возможности приближения,… …   Математическая энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ — замена по определенному правилу функции f(t).близкой к ней в том или ином смысле функцией j(t). из заранее фиксированного множества (приближающего множества). Предполагается, что функция f определена на том множестве Qm мерного евклидова… …   Математическая энциклопедия

  • Приближение и интерполирование функций —         раздел теории функций, посвященный изучению вопросов приближённого представления функций.          Приближение функций нахождение для данной функции f функции g из некоторого определённого класса (например, среди алгебраических… …   Большая советская энциклопедия

  • ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… …   Энциклопедия Кольера

  • Функций теория —         раздел математики, в котором изучаются общие свойства функций (См. Функции). Ф. т. распадается на две части: теория функций действительного переменного и теория функций комплексного переменного.          В «классическом» математическом… …   Большая советская энциклопедия

  • АНАЛИТИЧЕСКАЯ ФУНКЦИЯ — функция, к рая может быть представлена степенным рядом. Исключит, важность класса А. ф. определяется следующим. Во первых, этот класс достаточно ш и р о к: он охватывает большинство функций, встречающихся в основных вопросах математики и ее… …   Математическая энциклопедия

  • ЧЕБЫШЕВА ТЕОРЕМА — если функция f(х) непрерывна на [ а, b]и то Р п (х)тогда и только тогда является многочленом наилучшего равномерного приближения для функции f(x), т. е. когда существуют п+2 точки { х i}, образующие чебышиевский альтернаис то есть удовлетворяющие …   Математическая энциклопедия

  • История математики — История науки …   Википедия

  • Математика Древнего Востока — История науки По тематике Математика Естественные науки …   Википедия

  • ИНТЕРПОЛЯЦИОННЫЙ ПРОЦЕСС — процесс получения последовательности интерполирующих функций {fn(z)} при неограниченном возрастании числа n условий интерполирования. Если интерполирующие функции fn(z)представлены в виде частных сумм некоторого функционального ряда, то последний …   Математическая энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»