- Критерий совместности
-
Теоре́ма Кро́некера — Капе́лли — критерий совместности системы линейных алгебраических уравнений:
Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг матрицы равен числу неизвестных и бесконечное множество решений, если ранг матрицы меньше числа неизвестных. Система называется совместной, если имеет решения.
Содержание
Доказательство
Необходимость
Пусть система совместна. Тогда существуют числа
такие, что
. Следовательно, столбец b является линейной комбинацией столбцов
матрицы A. Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (соответственно столбец), которая является линейной комбинацией других строк (соответственно столбцов) следует, что
.
Достаточность
Пусть
. Возьмем в матрице A какой-нибудь базисный минор. Так как
, то он же и будет базисным минором и матрицы B. Тогда согласно теореме о базисном миноре последний столбец матрицы B будет линейной комбинацией базисных столбцов, то есть столбцов матрицы A. Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы A.
Следствия
- Количество главных переменных системы равно рангу системы.
- Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.
См. также
Литература
- В. А. Ильин, Г. Д. Ким Линейная алгебра и аналитическая геометрия, М.: ТК Велби, Изд-во Проспект, 2007, 400с.
Wikimedia Foundation. 2010.