- Кривизна кривой
-
В дифференциальной геометрии, кривизна́ — собирательное название ряда количественных характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.).
Обычно кривизна определяется для каждой точки на «объекте» и выражается как значение некоторого дифференциального выражения 2-го порядка. Иногда кривизна определяется в интегральном смысле, например, как мера, такие определения используют для «объектов» пониженной гладкости. Как правило, тождественное обращение в нуль кривизны во всех точках влечёт совпадение (локальное, но не глобальное) изучаемого «объекта» с «плоским» объектом.
В этой статье приводятся только несколько простейших примеров определений понятия кривизны.
Содержание
Кривизна кривой
Пусть γ(t) — регулярная кривая в d-мерном евклидовом пространстве, параметризованная длиной. Тогда
называется кривизной кривой γ в точке p = γ(t), здесь обозначает вторую производную по t. Вектор
называется вектором кривизны γ в точке p = γ(t0).
Для кривой, заданной параметрически в общем случае (параметр не обязательно является длиной), кривизна отображается формулой
- ,
где и соответственно обозначают первую и вторую производную радиус-вектора γ в требуемой точке.
Для того чтобы кривая γ совпадала с некоторым отрезком прямой или со всей прямой, необходимо и достаточно, чтобы кривизна (или вектор кривизны) тождественно равнялась нулю.
Величина, обратная кривизне кривой, называется радиусом кривизны; он совпадает с радиусом соприкасающейся окружности в данной точке кривой. Центр этой окружности называется центром кривизны.
Кривизна поверхности
Пусть Φ есть регулярная поверхность в трёхмерном евклидовом пространстве. Пусть p — точка Φ, Tp — касательная плоскость к Φ в точке p, n — единичная нормаль к Φ в точке p, а — πe плоскость, проходящая через n и некоторый единичный вектор e в Tp. Кривая γe , получающаяся как пересечение плоскости πe с поверхностью Φ, называется нормальным сечением поверхности Φ в точке p в направлении e. Величина
где обозначает скалярное произведение, а k — вектор кривизны γe в точке p, называется нормальной кривизной поверхности Φ в направлении e. С точностью до знака нормальная кривизна равна кривизне кривой γe.
В касательной плоскости Tp существуют два перпендикулярных направления e1 и e2 такие, что нормальную кривизну в произвольном направлении можно представить с помощью так называемой формулы Эйлера:
- κe = κ1cos2α + κ2sin2α
где α — угол между e1 и e2, a величины κ1 и κ2 нормальные кривизны в направлениях e1 и e2, они называются главными кривизнами, а направления e1 и e2 — главными направлениями поверхности в точке p. Главные кривизны являются экстремальными значениями нормальных кривизн. Структуру нормальных кривизн в данной точке поверхности удобно графически изображать с помощью индикатрисы Дюпена.
Величина
- H = κ1 + κ2, (иногда )
называется средней кривизной поверхности. Величина
- K = κ1κ2
называется гауссовой кривизной поверхности.
Гауссова кривизна является объектом внутренней геометрии поверхностей, в частности не изменяется при изометрических изгибаниях.
См. также
Литература
- Погорелов А. И. Дифференциальная геометрия (6-е издание). М.: Наука, 1974.
- Рашевский П. К. Курс дифференциальной геометрии (3-е издание). М.-Л.: ГИТТЛ, 1950.
Wikimedia Foundation. 2010.