Исчисления предикатов

Исчисления предикатов

Логика первого порядка (исчисление предикатов) — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций, и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высшего порядка.

Содержание

Основные определения

Язык логики первого порядка строится на основе сигнатуры, состоящей из множества функциональных символов \mathcal{F} и множества предикатных символов \mathcal{P}. С каждым функциональным и предикатным символом связана арность, то есть число возможных аргументов. Допускаются как функциональные так и предикатные символы арности 0. Первые иногда выделяют в отдельное множество констант. Кроме того используются следующие дополнительные символы

  • Символы переменных (обычно x,y,z,x1,y1,z1,x2,y2,z2, и т. д.),
  • Пропозициональные связки: \lor,\land,\neg,\to,
  • Кванторы: всеобщности \forall и существования \exists,
  • Служебные символы: скобки и запятая.

Перечисленные символы вместе с символами из \mathcal{P} и \mathcal{F} образуют Алфавит логики первого порядка. Более сложные конструкции определяются индуктивно:

  • Терм есть символ переменной, либо имеет вид f(t_1,\ldots,t_n), где f — функциональный символ арности n, а t_1,\ldots,t_n — термы.
  • Атом имеет вид p(t_1,\ldots,t_n), где p — предикатный символ арности n, а t_1,\ldots,t_n — термы.
  • Формула — это либо атом, либо одна из следующих конструкций: \neg F, F_1\lor F_2, F_1\land F_2, F_1\to F_2, \forall x F, \exists x F, где F,F1,F2 — формулы, а x — переменная.

Переменная x называется связанной в формуле F, если F имеет вид \forall x G либо \exists x G, или же представима в одной из форм \neg H, F_1\lor F_2, F_1\land F_2, F_1\to F_2, причем x уже связанна в H, F1 и F2. Если x не связанна в F, ее называют свободной в F. Формулу без свободных переменных называют замкнутой формулой, или предложением. Теорией первого порядка называют любое множество предложений.

Аксиоматика и доказательство формул

Система логических аксиом логики первого порядка состоит из аксиом исчисления высказываний дополненной двумя новыми аксиомами:

  • \forall x A \to A[t/x],
  • A[t/x] \to \exists x A,

где A[t / x] — формула, полученная в результате подстановки терма t вместо переменной x в формуле A.

Правил вывода 3:

Интерпретация

В классическом случае интерпретация формул логики первого порядка задается на модели первого порядка, которая определяется следующими данными

  • Несущее множество \mathcal{D},
  • Семантическая функция σ, отображающая
    • каждый n-арный функциональный символ f из \mathcal{F} в n-арную функцию \sigma(f):\mathcal{D}\times\ldots\times\mathcal{D}\rightarrow\mathcal{D},
    • каждый n-арный предикатный символ p из \mathcal{P} в n-арное отношение \sigma(p)\subseteq\mathcal{D}\times\ldots\times\mathcal{D}.

Обычно принято, отождествлять несущее множество \mathcal{D} и саму модель, подразумевая неявно семантическую функцию, если это не ведет к неоднозначности.

Предположим s — функция, отображающая каждую переменную в некоторый элемент из \mathcal{D}, которую мы будем называть подстановкой. Интерпретация [\![t]\!]_s терма t на\mathcal{D} относительно подстановки s задается индуктивно

  • [\![x]\!]_s = s(x), если x — переменная,
  • [\![f(x_1,\ldots,x_n)]\!]_s = \sigma(f)(\![x_1]\!]_s,\ldots,\![x_n]\!]_s)

В таком же духе определяется отношение истинности \models_s формул на \mathcal{D} относительно s

  • \mathcal{D}\models_s p(t_1,\ldots,t_n), тогда и только тогда, когда \sigma(p)( \![x_1]\!]_s,\ldots,\![x_n]\!]_s),
  • \mathcal{D}\models_s \neg\phi, тогда и только тогда, когда \mathcal{D}\models_s \phi — ложно,
  • \mathcal{D}\models_s \phi\land\psi, тогда и только тогда, когда \mathcal{D}\models_s \phi и \mathcal{D}\models_s \psi истинны,'
  • \mathcal{D}\models_s \phi\lor\psi, тогда и только тогда, когда \mathcal{D}\models_s \phi или \mathcal{D}\models_s \psi истинно,
  • \mathcal{D}\models_s \phi\to\psi, тогда и только тогда, когда \mathcal{D}\models_s \phi влечет \mathcal{D}\models_s \psi,
  • \mathcal{D}\models_s \exists x\, \phi, тогда и только тогда, когда \mathcal{D}\models_{s'} \phi для некоторой подстановки s', которая отличается от s только на переменной x,
  • \mathcal{D}\models_s \forall x\, \phi, тогда и только тогда, когда \mathcal{D}\models_{s'} \phi для всех подстановок s', которые отличается от s только на переменной x.

Формула φ, истинна на \mathcal{D}, что обозначается как \mathcal{D}\models \phi, если \mathcal{D}\models_s \phi, для всех подстановок s. Формула φ называется общезначимой, что обозначается как \models \phi, если \mathcal{D}\models \phi для всех моделей \mathcal{D}. Формула φ называется выполнимой , если \mathcal{D}\models \phi хотябы для одной \mathcal{D}.

Свойства и основные результаты

Логика первого порядка обладает рядом полезных свойств, которые делают ее очень привлекательной в качестве основного инструмента формализации математики. Главными из них являются полнота (это означает, что для любой формулы выводима либо она сама, либо ее отрицание) и непротиворечивость (ни одна формула не может быть выведена одновременно со своим отрицанием). При этом если непротиворечивость более или менее очевидна, то полнота — нетривиальный результат полученный Гёделем в 1930 году (теорема Гёделя о полноте). По сути теорема Гёделя устанавливает фундаментальную эквивалентность понятий доказуемости и общезначимости.

Логика первого порядка обладает свойством компактности: если некоторое множество формул не выполнимо, то невыполнимо также некоторое его конечное подмножество.

Согласно теореме Левенгейма — Сколема если множество формул имеет модель, то оно также имеет модель не более чем счетной мощности. С этой теоремой связан парадокс Сколема, который однако является лишь мнимым парадоксом.

Использование

Логика первого порядка как формальная модель рассуждений

Являясь формализованым аналогом обычной логики, логика первого порядка дает возможность строго рассуждать об истинности и ложности утверждений и об их взаимосвязи, в частности, о логическом следовании одного утверждения из другого, или, например, об их эквивалентности. Рассмотрим классический пример формализации утверждений естественного языка в логике первого порядка.

Возьмем рассуждение «Каждый человек смертен. Конфуций — человек. Следовательно, Конфуций смертен». Обозначим «x есть человек» через ЧЕЛОВЕК(x) и «x смертен» через СМЕРТЕН(x). Тогда утверждение «каждый человек смертен» может быть представлено формулой:  \forallx(ЧЕЛОВЕК(x) → СМЕРТЕН(x)) утверждение «Конфуций — человек» формулой ЧЕЛОВЕК(Конфуций), и «Конфуций смертен» формулой СМЕРТЕН(Конфуций). Утверждение в целом теперь может быть записано формулой

( \forallx(ЧЕЛОВЕК(x) → СМЕРТЕН(x))  \and ЧЕЛОВЕК(Конфуций) ) → СМЕРТЕН(Конфуций)

Обобщения

Литература

  • Гильберт Д., Аккерман В. Основы теоретической логики. М., 1947
  • Клини С. К. Введение в метаматематику. М., 1957
  • Мендельсон Э. Введение в математическую логику. М., 1976
  • Новиков П. С. Элементы математической логики. М., 1959
  • Черч А. Введение в математическую логику, т. I. М. 1960



Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Исчисления предикатов" в других словарях:

  • ПРЕДИКАТОВ ИСЧИСЛЕНИЕ — формальная аксиоматич. теория; исчисление, предназначенное для описания логических законов, справедливых для любой непустой области объектов с произвольными заданными на этих объектах предикатами (т. в. свойствами и отношениями). Для формулировки …   Математическая энциклопедия

  • ПРЕДИКАТОВ ИСЧИСЛЕНИЕ — общее название исчислений математической логики, являющихся формализацией тех разделов совр. логики, к рые изучают субъектно предикатную структуру предложений (высказываний), понимаемую в более широком, чем в традиц. логике, смысле: помимо теории …   Философская энциклопедия

  • ЛОГИКА ПРЕДИКАТОВ — центральный раздел логики, в котором изучается субъектно предикатная структура высказывании и истинностные взаимосвязи между ними. Л.п. представляет собой содержательное расширение логики высказываний. В рамках данного раздела любое высказывание… …   Философская энциклопедия

  • Логика предикатов —         раздел математической логики (См. Логика), изучающий логические законы, общие для любой области объектов исследования (содержащей хоть один объект) с заданными на этих объектах предикатами (т. е. свойствами и отношениями). В результате… …   Большая советская энциклопедия

  • ЛОГИЧЕСКИЕ ИСЧИСЛЕНИЯ — формализации содержательных логич. теорий; выводимые объекты Л. п. интерпретируются как суждения, составленные из простейших (имеющих, вообще говоря, субъектно предикатную структуру) при помощи пропозициональных связок и кванторов. Чаще всего… …   Математическая энциклопедия

  • ЛОГИКО-МАТЕМАТИЧЕСКИЕ ИСЧИСЛЕНИЯ — прикладные исчисления, формализации математич. теорий. Л. м. и. задается своим языком и перечнем постулатов (эти элементы образуют синтаксис).и в большинстве случаев снабжается семантикой. Существенными чертами, отличающими Л. м. и. от аксиоматич …   Математическая энциклопедия

  • логика предикатов —         ЛОГИКА ПРЕДИКАТОВ раздел символической логики, изучающий рассуждения и др. языковые контексты с учетом внутренней структуры входящих в них простых высказываний; при этом выражения языка трактуются функционально, т.е. как знаки некоторых… …   Энциклопедия эпистемологии и философии науки

  • ЛОГИКА ПРЕДИКАТОВ — раздел дедуктивной логики, в котором ведущую роль играет влияние внутренней структуры суждений на логический вывод. Поскольку здесь полностью сохраняется характер связей логики высказываний (см. Логика высказываний ), то Л. п. можно рассматривать …   Современный философский словарь

  • Логические исчисления — теория формальных логических вычислений. Эта теория иначе называется ещё математической или формальной логикой. Исторически логические исчисления были разработаны для теоретической формализации процесса доказательства в различных теориях.… …   Википедия

  • исчисление предикатов — раздел математической логики, логическое исчисление, в алфавит знаков которого, помимо символов исчисления высказываний, входят также символы вещей (индивидов), их свойств и отношений, а также выражений «все» и «некоторые» (кванторы), позволяющие …   Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»