Двигатель Стрерлинга


Двигатель Стрерлинга

Дви́гатель Сти́рлинга — тепловая машина, работающая не только от сжигания топлива, но от любого источника тепла, например — солнечных лучей. Относится к двигателям внешнего сгорания.

Содержание

История

Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года (английский патент № 4081). Однако первые элементарные «двигатели горячего воздуха» были известны ещё в конце XVII века, задолго до Стирлинга. Достижением Стирлинга является добавление очистителя, который он назвал «эконом». В современной научной литературе этот очиститель называется «регенератор» (теплообменник). Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.

Описание

Термодинамические циклы
Статья является частью серии «Термодинамика».
Цикл Аткинсона
Цикл Брайтона/Джоуля
Цикл Гирна
Цикл Дизеля
Цикл Калины
Цикл Карно
Цикл Ленуара
Цикл Миллера
Цикл Отто
Цикл Ренкина
Цикл Стирлинга
Цикл Тринклера
Цикл Хамфри
Цикл Эрикссона
Разделы термодинамики
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править

В XIX веке инженеры хотели создать безопасную альтернативу паровым двигателям того времени, котлы которых часто взрывались из-за высоких давлений пара и неподходящих материалов их структуры. Хорошая альтернатива паровым машинам появилась с созданием двигателей Стирлинга, который мог преобразовывать в работу любую разницу температур. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. В ряде экспериментальных образцов испытывались фреоны, двуокись азота, сжиженный пропан-бутан и вода. В последнем случае вода остается в жидком состоянии на всех участках термодинамического цикла. Особенностью стирлинга с жидким рабочим телом является малые размеры, высокая удельная мощность и большие рабочие давления.

Из термодинамики известно, что давление, температура и объём газа взаимосвязаны и следуют закону идеальных газов: PV = nRT\,\!
где P — давление газа
V — Объём газа
n — Количество молей газа
R — Универсальная газовая константа
Т — Температура газа в Кельвинах

Это означает, что при нагревании газа его объём увеличивается, а при охлаждении — уменьшается. Это свойство газов и лежит в основе работы двигателя Стирлинга.

Двигатель Стирлинга использует цикл Стирлинга, который по термодинамической эффективности не уступает циклу Карно, и даже обладает преимуществом. Дело в том, что цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация этого цикла малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах. Цикл Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в цилиндре. Разницу объёмов газа можно превратить в работу, чем и занимается двигатель Стирлинга. Ниже приведен рабочий цикл двигателя Стирлинга β-типа

1
2
3
4

где: a — вытеснительный поршень; b — рабочий поршень; с — маховик; d — огонь (область нагревания); e — охлаждающие ребра (область охлаждения);

1) Внешний источник тепла нагревает газ в нижней части теплообменного цилиндра. Создаваемое давление толкает рабочий поршень вверх (обратите внимание, что вытеснительный поршень неплотно прилегает к стенкам).
2) Маховик толкает вытеснительный поршень вниз, тем самым перемещая разогретый воздух из нижней части в охлаждающую камеру.
3) Воздух остывает и сжимается, поршень опускается вниз.
4) Вытеснительный поршень поднимается вверх, тем самым перемещая охлаждённый воздух в нижнюю часть. И цикл повторяется.

В машине Стирлинга движение рабочего поршня сдвинуто на 90 градусов относительно движения поршня-вытеснителя. В зависимости от знака этой сдвижки машина может быть двигателем или тепловым насосом. При сдвижке 0 машина не производит никакой работы (кроме потерь на трение) и не вырабатывает ее.

Конфигурация

Инженеры подразделяют двигатели Стирлинга на три различных типа:

Альфа Стирлинг
  • Альфа-Стирлинг Содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень — горячий, другой — холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, у Альфа-Стирлинга имеется ряд технических проблем, вызванных высокой температурой «горячего» поршня и его изоляции.
Схематический разрез ромбического механизма Бета-стирлинга
Розовый — горячая полость цилиндра, Тёмно-серый — холодная полость цилиндра (жёлтым показаны патрубки подачи и отвода охлаждающей жидкости), Темно-зелёный — термоизолирующая прокладка между разными концами цилиндра, Светло-зелёный — вытеснитель, Синий — рабочий поршень, Голубой — маховики,
Не показаны: внешний нагреватель и внешний охладитель. В этой конструкции поршень-вытеснитель выполнен без регенератора.
  • Бета Стирлинг У двигателя бета-типа цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, частью теплообменника, или совмещённым с поршнем-вытеснителем.
Гамма Стирлинг
  • Гамма Стирлинг У гамма-типа тоже есть поршень и «вытеснитель», но при этом два цилиндра — один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром.


Недостатки

Основной недостаток двигателя — материалоёмкость.

У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счет увеличенных радиаторов.

Для получения характеристик, конкурентных по сравнению с ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела — водород, гелий. Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряженных условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе.

Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске. Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества

Тем не менее, двигатель Стирлинга имеет неоспоримые преимущества, которые вынуждают заниматься его разработкой.

  • Всеядность двигателя Как все двигатели внешнего сгорания (вернее — внешнего подвода тепла), стирлинг может работать от перепада температур между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печки и т. д. Этот фактор прямо связан с экономичностью двигателя в широком плане — он позволяет заменить дорогие нефтяные топлива на дешевые альтернативные.
  • Простота конструкции В стирлинге отсутствуют многие элементы привычных двигателей: система зажигания, свечи, карбюратор, клапана, глушитель. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач.
  • Увеличенный ресурс Отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
  • Экономичность В случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.[1]
  • Экологичность Стирлинги могут использовать в качестве источника тепла теплоаккумуляторы на расплавах солей. Такие аккумуляторы превосходят по запасу энергии химические аккумуляторы и дешевле их. Используя для регулировки мощности изменение фазного угла между поршнями, можно аккумулировать механическую энергию, тормозя двигателем. В этом случае двигатель превращается в тепловой насос.
  • Бесшумность двигателя Стирлинг не имеет выхлопа, а значит — не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

Применение

Двигатель Стирлинга с линейным генератором переменного тока

Универсальные источники электроэнергии

Двигатели Стирлинга могут применяться для превращения в электроэнергию любой теплоты. На них возлагают надежды по созданию солнечных электроустановок. Их применяют как автономные генераторы для туристов. Некоторые фирмы выпускают генераторы, которые работают от конфорки газовой печи. NASA рассматривает варианты генераторов на основе стирлинга, работающие от ядерных и радиоизотопных источников тепла.

Насосы

Эффективность систем отопления или охлаждения возрастает, если в контуре установлен насос принудительной подачи теплоносителя. Установка электрического насоса снижает живучесть системы, а в быту неприятно тем, что электросчётчик «накручивает» хоть и небольшую, но ощутимую сумму. Насос, использующий принцип двигателя Стирлинга, решает эту проблему.

Стирлинг для перекачки жидкостей может быть гораздо проще привычной схемы «двигатель-насос». В двигателе Стирлинга вместо рабочего поршня может использоваться перекачиваемая жидкость, которая одновременно служит для охлаждения рабочего тела.

Насос на основе стирлинга может служить для накачки воды в ирригационные каналы посредством солнечного тепла, для подачи горячей воды от солнечного коллектора в дом (в системах отопления теплоаккумулятор стараются установить как можно ниже, чтобы вода шла в радиаторы самотёком).

Стирлинг-насос может использоваться для перекачки химических реагентов, поскольку абсолютно герметичен.

Тепловые насосы

Тепловые насосы позволяют существенно экономить на отоплении. Обычно используются теплонасосы, приводимые в движение электричеством. Но электричество в ряде стран производится на теплоэлектростанциях, сжигающих газ, уголь, мазут, и в результате калория, полученная на таком теплонасосе оказывается не дешевле, чем полученная от сжигания газа. Агрегат, в котором совмещены двигатель Стирлинга и тепловой насос Стирлинга, делает ситуацию более благоприятной. Двигатель Стирлинга отдает в систему отопления бросовое тепло от «холодного» цилиндра, а полученная механическая энергия используется для подкачки дополнительных порций тепла, которое забирается из окружающей среды. Гибридный теплонасос «стирлинг-стирлинг» оказывается проще, чем композиция из двух стирлинг-машин. В агрегате совершенно отсутствуют рабочие поршни. Перепады давления, возникающие в двигателе, непосредственно используются для перекачки тепла тепловым насосом. Внутреннее простаранство агрегата герметично и позволяет использовать рабочее тело под очень высоким давлением.

Расчёты показывают, что в идеале тепловой насос «стирлинг-стирлинг» на каждую калорию сожжённого газа может добавить ещё от 3 до 10 калорий из окружающей среды. На практике эта величина оказывается меньше. Опыты по использованию таких устройств были прекращены.

Холодильная техника

Практически, все холодильники используют те же тепловые насосы. Применительно к системам охлаждения их судьба оказалась более счастливой. Ряд производителей бытовых холодильников собирается установить на свои модели стирлинги. Они будут обладать большей экономичностью, а в качестве рабочего тела будут использовать обычный воздух.

Сверхнизкие температуры

Стирлинги оказались эфективны для сжижения газов. Если не требуется огромных объемов, то стирлинги выгоднее, чем турбинные установки.

Стирлинги выгодно применять для охлаждения датчиков в сверхточных приборах.

Подводные лодки

Преимущества стирлинга привели к тому, что еще в первой половине 1960-х годов военно-морские справочники указывали на возможность установки на подводных лодках типа «Шёурмен» производства Швеции воздухонезависимых двигателей Стирлинга. Однако ни «Шёурмены», ни последовавшие за ними «Наккены» и «Вестеръётланды» указанные силовые установки так и не получили. И только в 1988 году головная субмарина типа «Наккен» была переоборудована под двигатели Стирлинга. С ними она прошла под водой более 10 000 часов. Другими словами, именно шведы открыли в подводном кораблестроении эру вспомогательных анаэробных двигательных установок. И если «Наккен» — первый опытный корабль этого подкласса, то субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка.

Примечания

Ссылки


Wikimedia Foundation. 2010.


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.