БЮРМАНА - ЛАГРАНЖА РЯД

БЮРМАНА - ЛАГРАНЖА РЯД

ряд Лагранжа, - степенной ряд, полностью решающий задачу локального обращения голоморфных функций. Именно, пусть функция комплексного переменного z регулярна в окрестности точки , причем и . Тогда в нек-рой окрестности точки плоскости определена регулярная функция , обратная по отношению к и такая, что при этом, если - любая регулярная в окрестности точки функция, то сложная функция разлагается в окрестности точки w=b вряд Бюрмана - Лагранжа


Случай непосредственного обращения функции получается при .

Разложение (*) вытекает из теоремы Бюрмана [1]: при указанных выше предположениях относительно голоморфных функций последняя в нек-рой области на плоскости z, содержащей точку а, может быть представлена в виде:


- контур на плоскости t, содержащий внутри точки а и z и такой, что если - какая-либо точка внутри , то уравнение не имеет ни на , ни внутри иных корней, кроме простого корня .

Разложение (*) для случая было получено Ж. Лагранжем [2].

В случае, когда производная имеет в точке нуль порядка r- 1, В. -Л. р. для многозначной обратной функции допускает следующее обобщение (см.[3]):


Другое обобщение (см., напр., [4]) относится к функциям , регулярным в кольце; оно приводит вместо ряда (*) к ряду по положительным и отрицательным степеням разности .

Лит.:[1] Burmann H., "Mem. de 1'Inst. national des sci. et arts. Sci. Math, et Phys.", P., 1799, t. 2, p. 13-17; [2]

Lagrange J. L., "Mem. de Г Academic royale des sci. et belles-lettres de Berlin", 1770, t. 24; CEuvres, t. 2, P., 1868 p. 581 - 652; [3] Гурвиц А., Курант Р., Теория функций, пер. с нем., М., 1968, ч. 1, гл. 8; [4] Уиттекер 3. Т., Ватсон Дж. Н., Курс современного анализа, пер. с англ., 2 изд., т. 1, М., 1962; [5] Маркушевич А. И., Теория аналитических функций, 2 изд., т. 1, М., 1967. Е. Д. Соломенцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "БЮРМАНА - ЛАГРАНЖА РЯД" в других словарях:

  • Ряд Бюрмана — Лагранжа — определяется как разложение голоморфной функции f(z) по степеням другой голоморфной функции w(z) и представляет собой далеко идущее обобщение ряда Тейлора. Пусть f(z) и w(z) голоморфны в окрестности некоторой точки , притом w(a) = 0 и a простой… …   Википедия

  • ЛАГРАНЖА РЯД — степенной ряд, дающий решение задачи локального обращения голоморфной функции комплексного переменного. Первоначальное решение задачи обращения, данное Ж. Лагранжем (J. Lagrange, 1770), было затем усовершенствовано А. Бюрманом (H. Burmann, 1779) …   Математическая энциклопедия

  • Ряд Бюрмана-Лагранжа — определяется как разложение аналитической функции f(z) по степеням другой аналитической функции w(z) и представляет собой далеко идущее обобщение ряда Тейлора. Пусть f(z) и w(z) аналитичны в окрестности некоторой точки , притом w(a) = 0 и a… …   Википедия

  • Ряд Бурмана — Лагранжа — Ряд Бюрмана Лагранжа определяется как разложение аналитической функции f(z) по степеням другой аналитической функции w(z) и представляет собой далеко идущее обобщение ряда Тейлора. Пусть f(z) и w(z) аналитичны в окрестности некоторой точки ,… …   Википедия

  • Теорема Лагранжа об обращении рядов — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Пусть функция …   Википедия

  • СТЕПЕННОЙ РЯД — 1)С. р. по одному комплексному переменному z функциональный ряд вида где a центр ряда, bk его коэффициенты, bk(z a)k члены ряда. Существует число r, называемое радиусом сходимости С. р. (1) и определяемое по формуле Коши Адамара такое, что при |z …   Математическая энциклопедия

  • ОБРАЩЕНИЕ РЯДА — получение по известному степенному ряду ряда для обратной функции в виде где Ряд (2) наз. также О. р. (1), или рядом Лагранжа. Более общая задача о получении разложения произвольной сложной аналнтич. функции F[j(w)]решается Бюрмана Лагранжа рядом …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»