- Пропорциональность
-
Пропорциональными называются две взаимно зависимые величины, если отношение их значений остается неизменным.[1].
Содержание
Пример
Масса керосина пропорциональна его объёму: 2 л керосина имеют массу 1,6 кг, 5 л имеют массу 4 кг, 7 л имеют массу 5,6 кг. Отношение массы к объёму всегда будет равно плотности:
- 1,6 / 2 = 0,8;
- 4 / 5 = 0,8;
- 5,6 / 7 = 0,8 и т. д.
Коэффициент пропорциональности
Неизменное отношение пропорциональных величин называется коэффициентом пропорциональности. Коэффициент пропорциональности показывает, сколько единиц одной величины приходится на единицу другой[1].
Символ
Математический символ '∝' используется для указания пропорциональности двух величин. Пример, A ∝ B.
В юникоде для отображения используется символ U+221D.
Прямая пропорциональность
Прямая пропорциональность — функциональная зависимость, при которой некоторая величина зависит от другой величины таким образом, что их отношение остаётся постоянным. Иначе говоря, эти переменные изменяются пропорционально, в равных долях, то есть, если аргумент изменился в два раза в каком-либо направлении, то и функция изменяется тоже в два раза в том же направлении.
Математически прямая пропорциональность записывается в виде формулы:
Графиком прямой пропорциональности является прямая линия, проходящая через начало координат.
Обратная пропорциональность
Обра́тная пропорциона́льность — это функциональная зависимость, при которой увеличение независимой величины(аргумента) вызывает пропорциональное уменьшение зависимой величины(функции).
Свойства функции:
- Область определения
- Область значений
- Функция нечётна, так как
- Функция убывает на каждом из множеств
и
по отдельности для
и возрастает на каждом из них по отдельности при
.
См. также
Источники
Категория:- Элементарная математика
Wikimedia Foundation. 2010.