Функциональная зависимость

Функциональная зависимость
Запрос «Отображение» перенаправляется сюда. Cм. также другие значения.

В данной статье приведено общее определение математической функции. В средних школах и на нематематических специальностях высших учебных заведениях изучают более простое понятие числовой функции, являющееся частным случаем математической функции.

Содержание

Определения

  • Нестрогое определение: функция — это «закон», по которому каждому значению элемента x из некоторого множества X ставится в соответствие единственный элемент y из множества Y.
  • Строгое определение: функция или отображе́ние — это бинарное отношение, обладающее свойством:
\forall x\forall y\forall z((x,y)\in f\and(x,z)\in f\to y=z).
  • Функция называется инъективной, если \forall x\forall z(f(x)=f(z)\to x=z)

Обозначения

  • F=(f,\;X,\;Y), F\colon X\to Y или X\stackrel{F}{\longrightarrow}Y для отображения F множества X в множество Y;
    • Множество X называется о́бластью определе́ния отображения F (обозначается D(F), или \mathrm{dom}\,F.).
    • Множество Y называется о́бластью значе́ний отображения F.(обозначается E(F), или \mathrm{cod}\,F).
  • (x,y)\in f, y = F(x) или F\colon x\mapsto y или x\stackrel{F}{\longmapsto} y. Используется также обратная польская запись: y = xF, а иногда y = xF.
    • Элементы x называют аргументами функции, а соответствующие элементы yзначениями функции.

Связанные определения

  • Пусть дано отображение F\colon X\to Y, и M\subset X. Тогда суже́нием функции F на M называется функция F\big|_M\colon M\to Y, определяемая равенством
    F\big|_M(x)=F(x),\;\forall x\in M.
    Это определение подчёркивает, что фиксация области определения является частью определения функции.
  • F является продолжением функции F\big|_M на множество X\supset M. Можно рассматривать продолжения, обладающие различными свойствами, например аналитическое продолжение.
  • Пусть M\subset X. Тогда о́бразом множества M называется подмножество множества Y, определяемое равенством
    F(M)=\{F(x)\mid x\in M\}.
Множество F(X) называется образом отображения F и обозначается \mathrm{Im}\,F.
  • Пусть задано отображение F\colon X\to Y, x\in X,\;y\in Y и y = F(x). Тогда x называется проо́бразом y, а y называется о́бразом x. Согласно определению отображения, каждый элемент x\in X должен иметь ровно один образ, но элемент y\in Y может не иметь прообразов либо иметь один или несколько.
    • Например, пусть дана функция F\colon\R\to\R, где F(x) = x2. Тогда
      y = − 1 не имеет прообразов;
      y = 0 имеет единственный прообраз x = 0;
      y = 1 имеет два прообраза: x1 = 1 и x2 = − 1.
  • Пусть задано отображение F\colon X\to Y, и y\in Y. Тогда множество \{x\in X\mid F(x)=y\}\subset X называется по́лным проо́бразом элемента y. Полный прообраз обозначается F - 1(y).
    • Например, пусть F\colon\R\to\R, и F(x) = sinx. Тогда
      F^{-1}(1)=\left\{\frac{\pi}{2}+2\pi k\mid k\in\Z\right\}.
  • Пусть N\subset Y. Тогда проо́бразом множества N называется подмножество множества X, определяемое равенством
    F^{-1}(N)=\{x\in X\mid F(x)\in N \}.
    • Например, пусть F\colon\R\to\R, и F(x) = cosx. Тогда
      F\left(\left[0,\;\frac{\pi}{2}\right]\right)=[0,\;1],
      F^{-1}([0,\;1])=\bigcup\limits_{n\in\Z}\left[-\frac{\pi}{2}+2\pi n,\;\frac{\pi}{2}+2\pi n\right].

Свойства

Свойства прообразов и образов

  • F^{-1}(A\cup B)=F^{-1}(A)\cup F^{-1}(B),\;\forall A,\;B\subset Y;
  • F^{-1}(A\cap B)=F^{-1}(A)\cap F^{-1}(B),\;\forall A,\;B\subset Y;
  • F(A\cup B)= F(A)\cup F(B),\;\forall A,\;B\subset X;
  • F(A\cap B)\subset F(A)\cap F(B),\;\forall A,\;B\subset X. Заметим отсутствие равенства в этом случае.

Классы функций

При необходимости можно различать отображения в зависимости от природы множеств X и Y. Если X и Y — числовые множества, такие, как \R или \C, то отображение называют функцией. Если X или Y многомерны, например, \R^n или \C^n, то отображение называют ве́ктор-фу́нкцией. Если X — произвольной природы, а Y — поле, то отображение называют функциона́лом. В специальных случаях используют и другие термины: оператор, функтор, преобразование, морфизм и т. д.

Вариации и обобщения

Функции нескольких аргументов

Определение функции легко обобщить на случай функции многих аргументов.

Пусть даны множества X_1,\;X_2,\;\ldots,\;X_n и множество Y, тогда упорядоченное множество всех кортежей f=\left\{(x_1,\;x_2,\;\ldots,\;x_n,\;y)\right\} называется функцией n аргументов тогда и только тогда, когда для любых (x'_1,\;x'_2,\;\ldots,\;x'_n,\;y')\in f и (x''_1,\;x''_2,\;\ldots,\;x''_n,\;y'')\in f из y'\neq y'' следует, что x_{n}' \neq x_{n}'',\forall x\in [1,\;n]\cap\Z.[1]

Примечания

  1. Кудрявцев Л. Д. Курс математического анализа. — том 1. — М.: Высшая школа, 1981. — с. 8.

См. также

Литература

  • Функция. Математический энциклопедический словарь. — Гл. ред. Ю. В. Прохоров. — М.: «Большая российская энциклопедия», 1995.


Wikimedia Foundation. 2010.

Нужен реферат?

Полезное


Смотреть что такое "Функциональная зависимость" в других словарях:

  • функциональная зависимость — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN functional dependence …   Справочник технического переводчика

  • функциональная зависимость — funkcinė priklausomybė statusas T sritis fizika atitikmenys: angl. functional dependence vok. Funktionalabhängigkeit, f rus. функциональная зависимость, f pranc. dépendance fonctionnelle, f …   Fizikos terminų žodynas

  • Функциональная зависимость (программирование) — Функциональная зависимость  концепция, лежащая в основе многих вопросов, связанных с реляционными базами данных, включая, в частности, их проектирование. Математически представляет бинарное отношение между множествами атрибутов данного… …   Википедия

  • полная функциональная зависимость — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN fully functional dependence …   Справочник технического переводчика

  • Зависимость — В Викисловаре есть статья «зависимость» Зависимость  неоднозначный термин …   Википедия

  • ЗАВИСИМОСТЬ ФУНКЦИОНАЛЬНАЯ — см. ФУНКЦИЯ. Antinazi. Энциклопедия социологии, 2009 …   Энциклопедия социологии

  • функциональная характеристика переменного резистора — Ндп. закон изменения сопротивления переменного резистора Зависимость электрического сопротивления переменного резистора от положения подвижного контакта. Примечание Функциональная характеристика может определяться аналогично через выходное… …   Справочник технического переводчика

  • функциональная электроннолучевая трубка — Электроннолучевой прибор, воспроизводящий в аналоговой форме функциональную зависимость между сигналами. [ГОСТ 13820 77] Тематики электровакуумные приборы EN plotting display tube FR tube fonctionnel …   Справочник технического переводчика

  • Функциональная семантико-стилистическая категория, ФССК — – разновидность текстовых категорий (см.), отражающая функционально стилевую дифференциацию речи (типологию текстов). ФССК – это система разноуровневых языковых средств (включая текстовые), объединенных функционально семантически и стилистически… …   Стилистический энциклопедический словарь русского языка

  • Функциональная характеристика переменного резистора — 49. Функциональная характеристика переменного резистора Ндп. Закон изменения сопротивления переменного резистора D. Funktioneller Widerstandsverlauf E. Resistance law F. Loi de variation Зависимость электрического сопротивления переменного… …   Словарь-справочник терминов нормативно-технической документации

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»