- Асимптота
-
- Аси́мпто́та[1] (от греч. ασϋμπτωτος — несовпадающий, не касающийся) кривой с бесконечной ветвью — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность[2]. Термин впервые появился у Аполлония Пергского, хотя асимптоты гиперболы исследовал ещё Архимед[3].
Для гиперболыасимптотами являются оси абсцисс и ординат. Кривая может приближаться к своей асимптоте, оставаясь с одной стороны от нее
Содержание
Виды асимптот графиков
Вертикальная
Вертикальная асимптота — прямая вида
при условии существования предела
.
Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:
Замечание: обратите внимание на знаки бесконечностей в этих равенствах.
Горизонтальная
Горизонтальная асимптота — прямая вида
при условии существования предела
.
Наклонная
Наклонная асимптота — прямая вида
при условии существования пределов
Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!
Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен
), то наклонной асимптоты при
(или
) не существует!
Связь между наклонной и горизонтальной асимптотами
Если при вычислении предела
, то очевидно, что наклонная асимптота совпадает с горизонтальной. Какова же связь между этими двумя видами асимптот?
Дело в том, что горизонтальная асимптота является частным случаем наклонной при
, и из выше указанных замечаний следует, что
- Функция имеет или только одну наклонную асимптоту, или одну вертикальную асимптоту, или одну наклонную и одну вертикальную, или две наклонных, или две вертикальных, либо же вовсе не имеет асимптот.
- Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.
График функции с двумя горизонтальными асимптотамиНахождение асимптот
Порядок нахождения асимптот
- Нахождение вертикальных асимптот.
- Нахождение двух пределов
- Нахождение двух пределов
:
если
в п. 2.), то
, и предел
ищется по формуле горизонтальной асимптоты,
.
Наклонная асимптота — выделение целой части
Также наклонную асимптоту можно найти, выделив целую часть. Например:
Дана функция
.
Разделив нацело числитель на знаменатель, получим:
.
При
,
, то есть:
,
и
является искомым уравнением асимптоты.
Свойства
- Среди конических сечений асимптоты имеют только гиперболы. Асимптоты гиперболы как конического сечения параллельны образующим конуса, лежащим в плоскости, проходящей через вершину конуса параллельно секущей плоскости[4]. Максимальный угол между асимптотами гиперболы для данного конуса равен углу раствора конуса и достигается при секущей плоскости, параллельной оси конуса.
См. также
Примечания
- ↑ Двойное ударение поставлено согласно БСЭ и Советскому энциклопедическому словарю.
- ↑ Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 1.
- ↑ Математический энциклопедический словарь — М.: Советская энциклопедия, 1988. — 847 с.
- ↑ Taylor C. Geometrical Conics; Including Anharmonic Ratio and Projection, With Numerous Examples. — Cambridge: Macmillan, 1863. — С. 170.
Литература
- Рашевский П. К. Курс дифференциальной геометрии, 4-е изд. М., 1956.
- Графики функций: Справочник / Вирченко Н. А., Ляшко И. И., Швецов К. И. — Киев: Наук. думка, 1979, — 320 с.
Ссылки
Асимптота на Викискладе? - Асимптота // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
Для улучшения этой статьи желательно?: - Викифицировать статью.
- Исправить статью согласно стилистическим правилам Википедии.
- Переработать оформление в соответствии с правилами написания статей.
Категория:- Кривые
Wikimedia Foundation. 2010.