- Сопряжённый вектор
-
Wikimedia Foundation. 2010.
Сопряжённый оператор — Содержание 1 Общее линейное пространство 2 Топологическое линейное пространство … Википедия
ПРАВИЛА СУММ — теоретич. соотношения, фиксирующие значение нек рой суммы (интеграла) матричных элементов, характеризующих переходы между состояниями рассматриваемой системы. Широкое применение П. с. в физике связано с тем, что во мн. случаях из теоретич.… … Физическая энциклопедия
Состояние (квантовая механика) — У этого термина существуют и другие значения, см. Состояние. Квантовая механика Принцип неопределённости Гейзенберга … Википедия
Квантовое состояние — У этого термина существуют и другие значения, см. Состояние. Квантовая механика … Википедия
Чистое состояние — Квантовая механика Принцип неопределённости Введение ... Математическая формулировка ... Основа … Википедия
КВАНТОВАЯ МЕХАНИКА — (волновая механика), теория, устанавливающая способ описания и законы движения микрочастиц (элем. ч ц, атомов, молекул, ат. ядер) и их систем (напр., кристаллов), а также связь величин, характеризующих ч цы и системы, с физ. величинами,… … Физическая энциклопедия
СУПЕРСИММEТРИЯ — симметрия физ. системы, объединяющая состояния, подчиняющиеся разным статистикам статистике Бозе Эйнштейна (бозоны) и статистике Ферми Дирака (фермионы). Принципиальные основы С. сформулированы в нач. 1970 х гг. в работах [1, 2, 3]. В последующие … Физическая энциклопедия
Кватернион — Кватернионы (от лат. quaterni, по четыре) система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Кватернионы минимальное расширение комплексных чисел, образующее тело,… … Википедия
Эрмитов оператор — В математике оператор в комплексном или действительном гильбертовом пространстве называется эрмитовым, симметрическим, если он удовлетворяет равенству для всех из области определения . Здесь и далее полагается, что скалярное произведение … Википедия
Кватернионы — (англ. quaternion) это система гиперкомплексных чисел, предложенная У. Р. Гамильтоном в 1843 году. Умножение кватернионов некоммутативно; они образуют тело, которое обычно обозначается . Кватернионы очень удобны для описания изометрий… … Википедия