- Экспоненциальная функция
-
Экспонента — функция exp(x) = ex, где e — основание натуральных логарифмов.
Содержание
Определение
Экспоненциальная функция может быть определена различными эквивалентными способами. Например через ряд Тейлора:
или через предел:
Здесь x — любое вещественное или комплексное число.
Свойства
- (ex)' = ex, в частности
- Экспонента является единственным решением дифференциального уравнения y' = y с начальными данными y(0) = 1. Кроме того через экспоненту выражаются общие решения однородных дифференциальных уравнений.
- Экспонента определена на всей вещественной оси. Она всюду возрастает и строго больше нуля.
- Экспонента является выпуклой функцией.
- Обратная функция к ней — натуральный логарифм
.
- Производная в нуле равна 1, поэтому касательная к экспоненте в этой точке проходит под углом 45°.
- Основное функциональное свойство экспоненты:
- exp(a + b) = exp(a)exp(b).
- Непрерывная функция с таким свойством либо тождественно равна 0, либо имеет вид exp(ct), где c — некоторая константа.
Экспонента от комплексного аргумента
От комплексного аргумента z = x + iy экспонента определяется следующим образом:
- ez = ex + iy = exeiy = ex(cosy + isiny) (формула Эйлера)
В частности,
- eiπ + 1 = 0
Вариации и обобщения
Аналогично экспонента может быть определена для элемента произвольной ассоциативной алгебры. В конкретном случае требуется также доказательство того, что указанные пределы существуют.
Матричная экспонента
Экспоненту от квадратной матрицы (или линейного оператора) можно формально определить, подставив матрицу в соответствующий ряд:
Определённый таким образом ряд сходится для любого оператора A с ограниченной нормой, поскольку мажорируется рядом для экспоненты нормы A:
Следовательно, экспонента от матрицы
всегда определена и сама является матрицей.
С помощью матричной экспоненты легко задать вид решения линейного дифференциального уравнения с постоянными коэффициентами: уравнение
с начальным условием x(0) = x0 имеет своим решением x(t) = exp(At)x0.
Обратная функция
Обратной функцией к экспоненциальной функции является натуральный логарифм.
Обозначается ln(x):ln(x) = loge(x)
См. также
Wikimedia Foundation. 2010.