Полиномы Чебышёва

Полиномы Чебышёва

Многочле́ны Чебышёва — две последовательности многочленов \{ T_n(x)\}_{n=0}^{\infty} и \{ U_n(x)\}_{n=0}^{\infty}, названные в честь их первооткрывателя Пафнутия Львовича Чебышёва.

T1, T2, T3, T4, T5

Многочлен Чебышёва первого рода Tn(x) характеризуется как многочлен степени n со старшим коэффициентом 2n - 1, который меньше всего отклоняется от нуля на интервале [ − 1,1].

U1, U2, U3, U4, U5

Многочлен Чебышёва второго рода Un(x) характеризуется как многочлен степени n со старшим коэффициентом 2n, интеграл от абсолютной величины которого по интервалу [ − 1,1] принимает наименьшее возможное значение.

Содержание

Рекурсивное определение

Многочлены Чебышёва первого рода Tn(x) могут быть определены с помощью рекуррентного соотношения:

T_0(x) = 1 \,
T_1(x) = x \,
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x). \,

Многочлены Чебышёва второго рода Un(x) могут быть определены с помощью рекуррентного соотношения:

U_0(x) = 1 \,
U_1(x) = 2x \,
U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x). \,

Явные формулы

Многочлены Чебышёва являются решениями уравнения Пелля:

Tn(x)2 − (x2 − 1)Un − 1(x)2 = 1

в кольце многочленов с вещественными коэффициентами и удовлетворяют тождеству:

T_n(x) + U_{n-1}(x)\sqrt{x^2-1} = (x + \sqrt{x^2-1})^n.

Из последнего тождества также следуют явные формулы:

T_n(x)=\frac{(x+\sqrt{x^2-1})^n+(x-\sqrt{x^2-1})^n}{2} = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} (x^2-1)^k x^{n-2k};
U_n(x)=\frac{(x+\sqrt{x^2-1})^{n+1}-(x-\sqrt{x^2-1})^{n+1}}{2\sqrt{x^2-1}} = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n+1}{2k+1} (x^2-1)^k x^{n-2k}.

Тригонометрическое определение

Многочлены Чебышёва первого рода Tn(x) могут быть также определены с помощью равенства:

T_n(\cos(\theta))=\cos(n\theta). \,

или, что почти эквивалентно,

Tn(z) = cos(narccosz)

Многочлены Чебышёва второго рода Un(x) могут быть также определены с помощью равенства:

 U_n(\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin\theta}.

Примеры

Несколько первых многочленов Чебышёва первого рода

 T_0(x) = 1 \,
 T_1(x) = x \,
 T_2(x) = 2x^2 - 1 \,
 T_3(x) = 4x^3 - 3x \,
 T_4(x) = 8x^4 - 8x^2 + 1 \,
 T_5(x) = 16x^5 - 20x^3 + 5x \,
 T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1 \,
 T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x \,

Несколько первых многочленов Чебышёва второго рода

 U_0(x) = 1 \,
 U_1(x) = 2x \,
 U_2(x) = 4x^2 - 1 \,
 U_3(x) = 8x^3 - 4x \,
 U_4(x) = 16x^4 - 12x^2 + 1 \,
 U_5(x) = 32x^5 - 32x^3 + 6x \,
 U_6(x) = 64x^6 - 80x^4 + 24x^2 - 1 \,

Свойства

Многочлены Чебышёва обладают следующими свойствами:

  • Ортогональность по отношению к соответствующим скалярному произведению (с весом \frac1\sqrt{1-x^2} для многочленов первого рода и \sqrt{1-x^2} для многочленов второго рода).
  • Среди всех многочленов, значения которых на отрезке [ − 1,1] не превосходят по модулю 1, многочлен Чебышёва имеет:
    • наибольший старший коэффициент
    • наибольшее значение в любой точке a \geq 1
  • Нули полинома Чебышёва являются оптимальными узлами в различных интерполяционных схемах.

Обобщения

Вопрос о многочленах минимальной нормы с фиксированными коэффициентами при двух старших степенях был рассмотрен позднее Золотарёвым, найденные им полиномы носят название многочлены Золотарёва.

См. также

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "Полиномы Чебышёва" в других словарях:

  • Полиномы Чебышева — Многочлены Чебышёва две последовательности многочленов и , названные в честь их первооткрывателя Пафнутия Львовича Чебышёва. T1, T2, T3, T4 …   Википедия

  • Полиномы — В математике, многочлены или полиномы от одной переменной функции вида где ci фиксированные коэффициенты, а x переменная. Многочлены составляют один из важнейших классов элементарных функций. Изучение полиномиальных уравнений и их решений… …   Википедия

  • Фильтр Чебышёва — Линейные электронные фильтры Фильтр Баттерворта Фильтр Чебышёва Эллиптический фильтр Фильтр Бесселя Фильтр Гаусса Фильтр Лежандра Фильтр Габора Править Фильтр Чебышёв …   Википедия

  • Многочлены Чебышёва — две последовательности многочленов Tn(x) и Un(x), названные в честь Пафнутия Львовича Чебышёва. Многочлены Чебышёва играют важную роль в теории приближений, поскольку корни многочленов Чебышёва первого рода используются в качестве узлов в… …   Википедия

  • Многочлен Чебышёва — Многочлены Чебышёва две последовательности многочленов и , названные в честь их первооткрывателя Пафнутия Львовича Чебышёва. T1, T2, T3, T4 …   Википедия

  • Полином Чебышёва — Многочлены Чебышёва две последовательности многочленов и , названные в честь их первооткрывателя Пафнутия Львовича Чебышёва. T1, T2, T3, T4 …   Википедия

  • Немчинов, Василий Сергеевич — В Википедии есть статьи о других людях с такой фамилией, см. Немчинов. Василий Сергеевич Немчинов Дата рождения: 2 января (14 января) 1894(1894 01 14) Место рождения …   Википедия

  • Фильтр Чебышева I рода — Линейные электронные фильтры Фильтр Баттерворта Фильтр Чебышёва Эллиптический фильтр Фильтр Бесселя Фильтр Гаусса Фильтр Лежандра Фильтр Габора Править Фильтр Чебышёва один из типов линейных аналоговых или цифровых фильтров …   Википедия

  • Фильтр Чебышева II рода — Линейные электронные фильтры Фильтр Баттерворта Фильтр Чебышёва Эллиптический фильтр Фильтр Бесселя Фильтр Гаусса Фильтр Лежандра Фильтр Габора Править Фильтр Чебышёва один из типов линейных аналоговых или цифровых фильтров …   Википедия

  • Василий Немчинов — Василий Сергеевич Немчинов Дата рождения: 2 января 1894 Место рождения: с. Грабово, Пензенской губ. Дата смерти: 5 ноября 1964 Место смерти: Москва, СССР Научная сфера: экономика …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»