- первообразная функция
-
antiderivative
Англо-русский словарь технических терминов. 2005.
Англо-русский словарь технических терминов. 2005.
Первообразная — первообразная функция, функция производная от которой равна данной функции. См. Интегральное исчисление, Интеграл … Большая советская энциклопедия
ПЕРВООБРАЗНАЯ — (примитивная) функция, для конечной функции f(x) такая функция F(x), что всюду . Это определение является наиболее распространенным, но встречаются и другие, в к рых ослаблены требования существования всюду конечной F и выполнения всюду равенства … Математическая энциклопедия
Первообразная — Первообразной[1] или примитивной функцией (иногда называют также антипроизводной) данной функции f называют такую F, производная которой (на всей области определения) равна f, то есть F ′ = f. Вычисление первообразной заключается в нахождении… … Википедия
Функция Хевисайда — Единичная функция Хевисайда Функция Хевисайда (единичная ступенчатая функция, функция единичного скачка, включенная единица) кусочно постоянная функция, равная нулю для отрицательных значений аргумента и единице для пол … Википедия
Примитивная функция — (математическая) то же, что и первообразная функция. См. в статьях Интеграл, Интегральное исчисление … Большая советская энциклопедия
ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ — функция, имеющая период. 1) Пусть функция f(x).определена на и имеет период Т. Для получения графика f(x) достаточно график функции f(x).на , где а нек рое число, переместить вдоль R на + Т, +2Т, ... . Если П. ф. f(x).с периодом Тимеет конечную… … Математическая энциклопедия
Единичная функция Хевисайда — Функция Хевисайда, единичная ступенчатая функция, ступенька положения специальная математическая функция, чьё значение равно нулю для отрицательных аргументов и единице для положительных аргументов … Википедия
Производная функция — Производная основное понятие дифференциального исчисления, характеризующее скорость изменения функции. Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел… … Википедия
ОБОБЩЕННАЯ ФУНКЦИЯ — математическое понятие, обобщающее классич. понятие функции. Потребность в таком обобщении возникает во многих технич., физич. и математич. задачах. Понятие О. ф. дает возможность выразить в математически корректной форме такие идеализированные… … Математическая энциклопедия
РАЦИОНАЛЬНАЯ ФУНКЦИЯ — 1) Р. ф. функция w=R(z), где R(z) рациональное выражение от z, т. е. выражение, полученное из независимого переменного z и нек рого конечного набора чисел (действительных или комплексных) посредством конечного числа арифметич. действий. Р. ф.… … Математическая энциклопедия
Неопределённый интеграл — для функции это совокупность всех первообразных данной функции. Если функция определена и непрерывна на промежутке и её первообразная, то есть при , то … Википедия