бикомпактное подмножество
Смотреть что такое "бикомпактное подмножество" в других словарях:
Бикомпактное пространство — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
ОТНОСИТЕЛЬНО БИКОМПАКТНОЕ МНОЖЕСТВО — подмножество Мтопологич. пространства Xтакое, что его замыкание бикомпактно. М … Математическая энциклопедия
ГАРМОНИЧЕСКИЙ АНАЛИЗ АБСТРАКТНЫЙ — теория абстрактных Фурье рядов и Фурье интегралов. Классический гармонич. анализ теория рядов Фурье и интегралов Фурье интенсивно развивался под влиянием физич. задач в 18 19 вв., и в работах П. Дирихле (P. Dirichlet), Б. Римана (В. Riemann), А.… … Математическая энциклопедия
БИКОМПАКТНО ОТКРЫТАЯ ТОПОЛОГИЯ — одна из топологий на множестве отображений одного топо логич. пространства в другое. Если F некоторое множество отображений топология, пространства Xв то пологич. пространство Y, то каждый конечный набор пар бикомпактное подмножество пространства … Математическая энциклопедия
АЛГЕБРА — часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции арифметич. действия над натуральными и положительными рациональными числами встречаются в самых ранних математич. текстах,… … Математическая энциклопедия
РАЗМЕРНОСТЬ — топологического пространства X целочисленный инвариант dim X, определяемый следующим образом. Тогда и только тогда dim X = 1, когда . О непустом тополо гич. пространстве Xговорят, что оно не более чем n мерно, и пишут dim , если в любое конечное… … Математическая энциклопедия
ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО — совокупность двух объектов: множества X, состоящего из элементов произвольной природы, наз. точками данного пространства, и из введенной в это множество топологической структуры, или топологии, все равно открытой или замкнутой (одна переходит в… … Математическая энциклопедия
КОМПАКТНОСТЬ — свойство топологич. пространства, состоящее в том, что каждое бесконечное его подмножество имеет предельную точку. Для метрич. пространства понятие К. совпадает с понятием бикомпактности. Свойство К. может быть выражено в такой форме: всякое… … Математическая энциклопедия
СВЯЗНОСТЬ — свойство топологич. пространства, состоящее в том, что пространство нельзя представить в виде суммы двух отделенных друг от друга частей, или, более строго, непустых непересекающихся открыто замкнутых подмножеств. Пространство, не являющееся… … Математическая энциклопедия
Компактное пространство — определённый тип топологических пространств, включающий Все пространства с конечным числом точек; Все замкнутые и ограниченные подмножества евклидова пространства. В топологии компактные пространства по своим свойствам напоминают конечные… … Википедия
Компактное множество — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия