ФАКТОРНЫЙ АНАЛИЗ


ФАКТОРНЫЙ АНАЛИЗ

- раздел многомерного статистич. анализа, объединяющий математико-статистич. методы снижения размерности исследуемого многомерного признака x= (x1, х 2, . . ., x р)', т. е.-построения,- на основе исследования структуры связей между компонентами xixj, i, j=1,2, . . ., р,- таких моделей, к-рые позволяли бы восстанавливать (с нек-рой случайной ошибкой прогноза значения ранализируемых компонент признака хпо существенно меньшему числу так наз. общих (непосредственно не наблюдаемых) факторов f=(f1, f2, . . ., f т)'.
Простейшим вариантом формализации подобной постановки задачи служит линейная нормальная модель Ф. а, с взаимно ортогональными общими факторами и с некоррелированными остатками:

или в матричной записи


где -матрица qкоэффициентов линейного преобразования наз. матрицей нагрузок общих факторов на исследуемые переменные.
Предполагается, что вектор специфич. остатков (ошибок прогнозов) подчиняется р-мерному нормальному распределению с нулевым вектором средних значений и с неизвестной диагональной ковариационной матрицей вектор общих факторов f, в зависимости от специфики решаемой задачи, может интерпретироваться либо как m-мерная случайная величина с ковариационной матрицей Vf специального вида, а именно - с единичной (т. е. Vf=Im), либо как вектор неизвестных неслучайных параметров (взаимно ортогональных и нормированных), значения к-рых меняются от наблюдения к наблюдению.
Если предположить, что наши переменные заранее процентрированы (т. е. то из (1') с учетом принятых допущений немедленно получается следующее соотношение, связывающее ковариационные матрицы векторов xи и матрицу нагрузок:

При проведении реального статистич. анализа исследователь располагает лишь оценками элементов ковариационной матрицы Vx (полученными по наблюдениям x1, х 2, ..., xn), в то время как структурные параметры модели - элементы qki матрицы нагрузок . и дисперсии специфич. остатков являются неизвестными и подлежат определению.
Таким образом, при проведении Ф. <а. исследователю приходится последовательно решать следующие основные задачи:
существования или правомерности использования модели типа (1); ведь далеко невсякая ковариационная матрица Vx представима в виде (2); задача сводится к проверке гипотезы о специальной структуре связей между компонентами исследуемого вектора х;единственности (идентификации) модели типа (1); принципиальные трудности при вычислениях и интерпретации модели состоят в том, что при т> 1 ни структурные параметры, ни сами факторы не определяются однозначно; если пара является решением в соотношении (2), то и любая другая пара вида где с- ортогональная матрица размера тоже будет удовлетворять соотношению (2); обычно выясняют, при каких дополнительных априорных ограничениях на матрицу нагрузок qи на ковариационную матрицу остатков определение параметров q, f и анализируемой модели будет единственным; возможность ортогонального вращения решения факторной модели используется также для получения наиболее естественно интерпретируемого решения;
статистич. оценивания (по наблюдениям x1, x2,... ,x п) неизвестных структурных параметров модели qи
статистич. проверки ряда гипотез, связанных с природой модели (линейность, нелинейность и т. п.) и со значениями ее структурных параметров таких, как гипотеза об истинном числе общих факторов, гипотеза адекватности принятой модели по отношению к имеющимся результатам наблюдения, гипотеза о статистически значимом отличии от нуля коэффициентов qij и т. п.;
построения статистич. оценок для ненаблюдаемых значений общих факторов f; алгоритмически - вычислительной реализации процедур статистич. оценивания и статистич. проверки гипотез.
Разработка теоретически обоснованных решений перечисленных задач в достаточно полной мере осуществлена лишь в рамках описанной выше линейной нормальной модели Ф. а.
Однако в практич. применениях широко используются более общие версии моделей Ф. а.: нелинейные, построенные на неколичестненных переменных, оперирующие с трехмерными матрицами исходных данных (к двум традиционным измерениям исходных данных - размерности ри числу наблюдений п,- присоединяется еще одна, пространственная или временная, координата). Подобные модели не сопровождаются, как правило, сколько-нибудь убедительным матема-тико-статистич. анализом их свойств, но основаны на вычислительных рекомендациях эвристич. или полуэвристич. характера.

Лит.:[1] Xатман Г., Современный факторный анализ, пер. с англ., М., 1972; [2] Айвазян С. А., Бежаева 3. И., Староверов О. В., Классификации многомерных наблюдений, М., 1974; [3] Sреаrman С., лAmer. J. Psychol.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ФАКТОРНЫЙ АНАЛИЗ" в других словарях:

  • Факторный анализ — Факторный анализ  многомерный метод, применяемый для изучения взаимосвязей между значениями переменных. Предполагается, что известные переменные зависят от меньшего количества неизвестных переменных и случайной ошибки. Содержание 1 Краткая… …   Википедия

  • факторный анализ — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] факторный анализ Область математической статистики (один из разделов многомерного статистического анализа), объединяющая вычислительные методы, которые в ряде случаев позволяют …   Справочник технического переводчика

  • ФАКТОРНЫЙ АНАЛИЗ — статистический метод проверки гипотез о влиянии разл. факторов на изучаемую случайную величину. Разработана и общепринята модель, при которой влияние фактора представлено в линейном виде. Процедура анализа сводится к оценочным операциям с помощью …   Геологическая энциклопедия

  • факторный анализ — (от лат. factor действующий, производящий и греч. analysis разложение, расчленение) метод многомерной математической статистики (см. статистические методы в психологии), применяемый при исследовании статистически связанных признаков с целью… …   Большая психологическая энциклопедия

  • ФАКТОРНЫЙ АНАЛИЗ — метод исследования экономики и производства, в основе которого лежит анализ воздействия разнообразных факторов на результаты экономической деятельности, ее эффективность. Райзберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б.. Современный экономический …   Экономический словарь

  • Факторный анализ — [factorial analysis] область математической статистики (один из разделов многомерного статистического анализа), объединяющая вычислительные методы, которые в ряде случаев позволяют получить компактное описание исследуемых явлений на основе… …   Экономико-математический словарь

  • ФАКТОРНЫЙ АНАЛИЗ — ФАКТОРНЫЙ АНАЛИЗ, в статистике и психометрии математический метод, при помощи которого большое количество измерений и исследований сводится к малому числу «факторов», полностью объясняющих полученные результаты исследований, а также их… …   Научно-технический энциклопедический словарь

  • Факторный анализ —         раздел статистического анализа многомерного (См. Статистический анализ многомерный),. объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц.… …   Большая советская энциклопедия

  • ФАКТОРНЫЙ АНАЛИЗ — (factor analysis) многомерная статистическая методика, в которой соотношения (или корреляции) между большой совокупностью наблюдаемых переменных объясняются в терминах небольшого числа новых переменных, называемых факторами. Эти идеи зародились в …   Большой толковый социологический словарь

  • ФАКТОРНЫЙ АНАЛИЗ — Этот термин в действительности не представляет собой единого понятия, скорее он служит общим названием для ряда статистических процедур, которые направлены на определение места меньшего числа измерений, кластеров или факторов (4) в большем наборе …   Толковый словарь по психологии

  • ФАКТОРНЫЙ АНАЛИЗ — (FACTOR ANALYSIS) Совокупность статистических техник, часто используемая при изучении основополагающей структуры ряда переменных. Факторный анализ, выявляющий такие фундаментальные измерения в совокупности данных, позволяет упростить сложные… …   Социологический словарь

Книги

Другие книги по запросу «ФАКТОРНЫЙ АНАЛИЗ» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.