- СХОДИМОСТЬ ПОЧТИ ВСЮДУ
- см. Сходимость.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
- см. Сходимость.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
Сходимость почти всюду — У этого термина существуют и другие значения, см. Сходимость. Последовательность функций сходится почти всюду к предельной функции, если множество точек, для которых сходимость отсутствует, имеет нулевую меру. Содержание 1 Определение 1.1 Термин … Википедия
Почти всюду — Об утверждении, зависящем от точки пространства с мерой, говорят, что оно выполнено почти всюду, если множество точек, для которых оно не выполнено, пренебрежимо мало. Содержание 1 Определение 2 Пример 3 См. также … Википедия
СХОДИМОСТЬ ПОЧТИ НАВЕРНОЕ — сходимость с вероятностью единица, сходимость последовательности случайных величин X1, Х2, . . ., Х п. . . ., заданных на нек ром вероятностном пространстве к случайной величине X, определяемая следующим образом: (или п. н.), если В математич.… … Математическая энциклопедия
Сходимость — В математике Сходимость означает то, что бесконечная последовательность или сумма бесконечного ряда или несобственный интеграл имеют предел. Понятия имеют смысл для произвольных последовательностей, рядов и интегралов: Предел последовательности… … Википедия
Почти везде — Утверждение, зависящее от точки пространства с мерой, выполнено почти всюду, если множество точек, для которых оно не выполнено, пренебрежимо мало. Определение Пусть пространство с мерой. Обозначим символом T множество точек из X, для которых… … Википедия
Почти все — Утверждение, зависящее от точки пространства с мерой, выполнено почти всюду, если множество точек, для которых оно не выполнено, пренебрежимо мало. Определение Пусть пространство с мерой. Обозначим символом T множество точек из X, для которых… … Википедия
Почти наверное — Утверждение, зависящее от точки пространства с мерой, выполнено почти всюду, если множество точек, для которых оно не выполнено, пренебрежимо мало. Определение Пусть пространство с мерой. Обозначим символом T множество точек из X, для которых… … Википедия
Сходимость в Lp — У этого термина существуют и другие значения, см. Сходимость. Сходимость в в функциональном анализе, теории вероятностей и смежных дисциплинах вид сходимости измеримых функций или случайных величин. Определение Пусть пространство с… … Википедия
Сходимость по распределению — в теории вероятностей вид сходимости случайных величин. Содержание 1 Определение 2 Замечания … Википедия
Сходимость по мере — (по вероятности) в функциональном анализе, теории вероятностей и смежных дисциплинах это вид сходимости измеримых функций (случайных величин), заданных на пространстве с мерой (вероятностном пространстве). Определение Пусть пространство с мерой.… … Википедия