СПИНОРНОЕ ПРЕДСТАВЛЕНИЕ

СПИНОРНОЕ ПРЕДСТАВЛЕНИЕ

простейшее точное линейное представление спинорной группы,Spinn(Q) или определяющее его линейное представление объемлющей четной алгебры Клиффорда С +=-С +(Q). Если основное поле . алгебраически замкнуто, то алгебра С+ изоморфна полной матричной алгебре (при n=2m+l) или алгебре (при п=2т). Тем самым определено линейное представление r алгебры С + в пространстве размерности 2 т над K, к-рое наз. спинорным. Ограничение наз. С. п. группы Spinn(Q). С. п. при нечетном пнеприводимо, а при четном n распадается в прямую сумму двух неэквивалентных неприводимых представлений и к-рые наз. полуспинорными. Элементы пространства С. и. наз. спинорами, а полуспинорных - полуспинорами. С. п. спинорной группы Spinn caмоконтрагредиентно при любом полуспинорные представления и спинорной группы Spin2m caмоконтрагредиентны при четном . и контрагредиентны друг другу при нечетном т. С. п. группы Spinn точно при любом полуспинорные представления группы Spin2m точны при нечетном . и имеют ядро, состоящее из двух элементов, при четном m.
Если квадратичная форма Qзадана в пространство Vнад нек-рым подполем то С. п. не всегда определено над k. Однако, если индекс Витта квадратичной формы Qмаксимален, то есть равен [n/2] (в частности, если поле kалгебраически замкнуто), то спинорное и полуспинорные представления определены над k. В этом случае указанные представления могут быть описаны следующим образом (см. [1]). Пусть Lи М - непересекающиеся определенные над kмаксимальные вполне изотропные (относительно симметрической билинейной формы в V, ассоциированной с квадратичной формой Q) подпространства в V, CL- подалгебра в алгебре Клиффорда C=C(Q), порожденная подпространством и - произведение твекторов, составляющих определенный над kбазис пространства М. Если n=2тчетно, то С. п. реализуется в простом левом идеале Се M и действует там с помощью левых сдвигов: Далее соответствие определяет изоморфизм векторных пространств что позволяет реализовать С. п. в пространстве CL, естественно изоморфном внешней алгебре над пространством L. При этом полуспинорные представления и реализуются в инвариантных 2m-1 -мерных подпространствах и
Если пнечетно, то пространство . можно включить в (n+1)-мерное векторное пространство над kиопределить в V1 квадратичную форму Q1, положив при всех и При этом Q1 -определенная над kневырожденная квадратичная форма максимального индекса Витта на четномерном векторном пространстве V1. С. п. алгебры С +(Q) (группы Spinn (Q) получается путем ограничения любого пз полуспинорных представлений алгебры С +(Q1) (группы Spinn+1(Q1)) на подалгебру C+(Q) (соответственно подгруппу Spinn(Q).
В случае, когда " a k- алгебраически замкнутое поле характеристики 0, решена задача классификации спиноров (см. [4], [8]. [9]), к-рая состоит в 1) описании всех орбит группы r (Spinn) в пространстве спиноров, т. е. указании в каждой орбите нек-рого единственного представителя, 2) вычислении стабилизаторов группы Spinn в каждом из этих представителей, 3) описании алгебры инвариантов линейной группы
Существование снинорных и полуспинорных представлений алгебр Ли групп Spinn было открыто Э. Картаном (E. Cartau) в 1913, когда он классифицировал все неприводимые конечномерные представления простых алгебр Ли [6]. Впоследствии, в 1935 Р. Брауэр (R. Brauer) и Г. Вейль (Н. Wеyl) описали спинорные и полуспинорные представления в терминах алгебр Клиффорда [5]. П. Дирак (P. Dirac, [3]) обнаружил, что при помощи спиноров в квантовой механике описывается вращение электрона.

Лит.:[1] Бурбаки Н., Алгебра. Модули, кольца, формы, пер. cфранц., М., 1966; [2] Вейль Г., Классические группы, их инварианты и представления, пер. с нем., М., 1947; [3] Дирак П., Принципы квантовой механики, пер. с англ., 2 изд., М., 1079; [4] Попов В. Л., лТр. Моск. матем. об-ва


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "СПИНОРНОЕ ПРЕДСТАВЛЕНИЕ" в других словарях:

  • спинорное представление — spinorinis vaizdavimas statusas T sritis fizika atitikmenys: angl. spinor representation vok. Spindarstellung, f; Spinordarstellung, f rus. спинорное представление, n pranc. représentation spinorielle, f …   Fizikos terminų žodynas

  • МНОГОЗНАЧНОЕ ПРЕДСТАВЛЕНИЕ — связной топологической группы G обычное представление я такой связной топология, группы G , что группа Gизоморфна (как топологич. группа) факторгруппе группы по ее дискретному нормальному делителю N, к рый не содержится в ядре представления М. п …   Математическая энциклопедия

  • ПРОЕКТИВНОЕ ПРЕДСТАВЛЕНИЕ — группы G гомоморфизм этой группы в группу PGL(V).проективных преобразований проективного пространства P(V), связанного с векторным пространством Vнад полем k. С каждым П. п. ср группы Gсвязано центральное расширение этой группы (*) где р естеств …   Математическая энциклопедия

  • СПИНОР — (от англ. spin вращаться) элемент пространства спинорного представления группы вращений. Вращений группа SO(n )при п 3 двусвязна. Её односвязная накрывающая называется спинорной группойSpin(n). Каждое линейное представление SO(n )порождает… …   Физическая энциклопедия

  • Спинор — (англ. spin вращаться) специальное обобщение понятия вектора, применяемое для лучшего описания группы вращений евклидова или псевдоевклидова пространства. Смысл спинорного описания пространства V построение вспомогательного комплексного… …   Википедия

  • СПИНОРНАЯ ГРУППА — невырожденной квадратичной формы Qна п мерном векторном пространстве Vнад полем k связная линейная алгебраич. группа, являющаяся универсальной накрывающей неприводимой компоненты единицы ортогональной группы On(Q)формы Q. Если char то группа… …   Математическая энциклопедия

  • КЛИФФОРДА АЛГЕБРА — (спинорная алгебра) ассоциативная алгебра К n с п образующими k1, . . .,kn, т. е. совокупность линейных комбинаций из произведений ki, причём выполняются соотношения: при , =1. (1) К. а. названа по имени У. Клиффорда (W. Clifford), к рый ввёл её… …   Физическая энциклопедия

  • ПАУЛИ МАТРИЦЫ — двухрядные комплексныеэрмитовы матрицы Введены В. Паули (W. Pauli, 1927) для описаниясобств. механич. момента ( спина) имагн. момента электрона (см. Паули уравнение). Благодаря перестановочным с …   Физическая энциклопедия

  • Spindarstellung — spinorinis vaizdavimas statusas T sritis fizika atitikmenys: angl. spinor representation vok. Spindarstellung, f; Spinordarstellung, f rus. спинорное представление, n pranc. représentation spinorielle, f …   Fizikos terminų žodynas

  • Spinordarstellung — spinorinis vaizdavimas statusas T sritis fizika atitikmenys: angl. spinor representation vok. Spindarstellung, f; Spinordarstellung, f rus. спинорное представление, n pranc. représentation spinorielle, f …   Fizikos terminų žodynas


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»