СОВЕРШЕННОЕ ОТОБРАЖЕНИЕ

СОВЕРШЕННОЕ ОТОБРАЖЕНИЕ

непрерывное замкнутое отображение топологич. пространств, при к-ром прообразы всех точек бикомпактны. С. о. во многом аналогичны непрерывным отображениям бикомпактов в хаусдорфовы пространства (каждое такой отображение совершенно), но сферой действия имеют класс всех топологич. пространств. В классе вполне регулярных пространств С. о. характеризуются существованием у них непрерывного продолжения на нек-рые бикомпактные расширения, при к-ром наросты расширений отображаются в наросты. С. о. сохраняет метризуемость, паракомпактность, вес, полноту по Чеху в сторону образа; другие инварианты (напр., характер пространства) оно преобразует правильным образом. Класс С. о. замкнут относительно операций произведения и композиции. Сужение С. о. на замкнутое подпространство является С. о. (не так обстоит дело для факторных и открытых отображений).
Названные свойства С. о. привели к тому, что класс этих отображений стал играть стержневую роль в классификации топологич. пространств. Прообразы метрич. пространств при С. о. охарактеризованы как паракомпактные перистые (р)-пространства. Класс паракомпактных р-пространств замкнут уже в обе стороны относительно С. о. Важным свойством С. о. является возможность сузить каждое из них на нек-рое замкнутое подпространство, не уменьшая образа, так, чтобы получившееся отображение было неприводимым - не допускало дальнейшего сужения на замкнутое подпространство без уменьшения образа. Неприводимые С. о. являются отправной точкой построения теории абсолютов топологич. пространств. При неприводимом С. о. -вес образа всегда равен -весу отображаемого пространства и число Суслина образа равно числу Суслина отображаемого пространства. Если вполне регулярное Т 1 -пространство X отображается на вполне регулярное Т 1 -пространство Y посредством С. о., то Xгомеоморфно замкнутому подпространству топологич. произведения пространства У на нек-рый бикомпакт. Диагональное произведение С. о. и непрерывного отображения всегда является С. о., в частности диагональное произведение С. о. и уплотнения является гомеоморфизмом, и если топологическое пространство совершенно отображается и уплотняется на нек-рое (вообще говоря, другое) метрическое пространство, то оно само метризуемо.

Лит.:[1] Архангельский А. В., Пономарев В. И., Основы общей топологии в задачах и упражнениях, М., 1974; [2] Бурбаки Н., Общая топология. <Основныеструктуры, пер. с франц., М., 1968.
А. В. Архангельский.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "СОВЕРШЕННОЕ ОТОБРАЖЕНИЕ" в других словарях:

  • СОВЕРШЕННОЕ НЕПРИВОДИМОЕ ОТОБРАЖЕНИЕ — совершенное отображение f пространства X на пространство Y, являющееся неприводимым (т. е. Y не является образом никакого замкнутого в Xмножества, отличного от X). М. И. Войцеховский …   Математическая энциклопедия

  • СОВЕРШЕННОЕ БИКОМПАКТНОЕ РАСШИРЕНИЕ — расширение Y вполне регулярного пространства X такое, что замыкание в Yграницы любого открытого множества служит границей O(U), где O(U) максимально открытое в У множество, для к рого Эквивалентные требования: а) для любой пары непересекающихся… …   Математическая энциклопедия

  • БИКОМПАКТНОЕ ОТОБРАЖЕНИЕ — отображение одного пространства в другое, при к ром прообраз каждой точки есть бикомпакт (см. Бикомпактное пространство). Требование бикомпактности отображения особенно полезно в соединении с другими ограничениями на отображение. Прежде всего… …   Математическая энциклопедия

  • БИКОМПАКТНОЕ РАСШИРЕНИЕ — (би)компактификация, расширение топологического пространства, являющееся бикомпактным пространством. Б. р. существуют у любого топологич. пространства, у любого T1 пространства есть Б. р., являющиеся T1 пространствами, но наибольший интерес… …   Математическая энциклопедия

  • ПЕРИСТОЕ ПРОСТРАНСТВО — вполне регулярное хаусдорфово пространство, обладающее оперением в нек ром своем хаусдорфовом бикомпактном расширении. Оперением подпространства Xтопология, пространства Y в Y наз. счетная система семейств открытых множеств в Y такая, что для… …   Математическая энциклопедия

  • Кошелев, Николай Андреевич — В Википедии есть статьи о других людях с такой фамилией, см. Кошелев. Николай Кошелев …   Википедия

  • ЖИЗНЬ — Иисус Христос Спаситель и Жизнеподатель. Икона. 1394 г. (Художественная галерея, Скопье) Иисус Христос Спаситель и Жизнеподатель. Икона. 1394 г. (Художественная галерея, Скопье) [греч. βίος, ζωή; лат. vita], христ. богословие в учении о Ж.… …   Православная энциклопедия

  • ИОАНН ДУНС СКОТ — [лат. Ioannes (Johannes) Duns Scotus] († 8.11.1308, Кёльн), средневек. философ и богослов, католич. священник, член монашеского ордена францисканцев; в католич. Церкви прославлен в лике блаженных (пам. зап. 8 нояб.). Жизнь. Иоанн Дунс Скот. 1473… …   Православная энциклопедия

  • ВАСИЛИЙ ВЕЛИКИЙ — [греч. Βασίλειος ὁ Μέγας] (329/30, г. Кесария Каппадокийская (совр. Кайсери, Турция) или г. Неокесария Понтийская (совр. Никсар, Турция) 1.01.379, г. Кесария Каппадокийская), свт. (пам. 1 янв., 30 янв. в Соборе 3 вселенских учителей и святителей; …   Православная энциклопедия

  • ЭРГОДИЧЕСКАЯ ТЕОРИЯ — Введение Э. т. (метрическая теория динамических систем) раздел теории динамических систем, изучающий их статистич. свойства. Возникновение Э. т. (1 я треть 20 в.) было стимулировано попытками доказать эргодическую гипотезу (термин введён П. и Т.… …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»