ПЕРВЫЙ ИНТЕГРАЛ

ПЕРВЫЙ ИНТЕГРАЛ

обыкновенного дифференциального уравнения - отличная от постоянной и непрерывно дифференцируемая функция, производная к-рой вдоль решений данного уравнения тождественно равна нулю. Для скалярного уравнения

(*)

П. и. есть функция F(x, у), находящаяся в левой части общего решения F(x, y)=C, где С - произвольная постоянная. Таким образом, F(x, у).удовлетворяет линейному уравнению


с частными производными 1-го порядка. П. и. может не существовать во всей области задания уравнения (*), однако в малой окрестности точки, в к-рой функция f(x, у).непрерывно дифференцируема, он всегда существует. П. и. определяется не единственным образом. Так, для уравнения П. и. является как функция x2+y2, так, напр., и функция Знание П. и. нормальной системы


позволяет понизить порядок этой системы на единицу, а отыскание пфункционально независимых П. и. равносильно отысканию общего решения в неявном виде. Если - функционально независимые П. и., то всякий другой П. и. F(x, t).можно представить в виде


где Ф - нек-рая дифференцируемая функция.

Лит.:[1] Понтрягин Л. С., Обыкновенные дифференциальные уравнения, 4 изд., М., 1974. Н. Н. Ладис.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "ПЕРВЫЙ ИНТЕГРАЛ" в других словарях:

  • Первый интеграл —         системы обыкновенных дифференциальных уравнений                  , i = 1, …, n          соотношение вида                  (где С произвольная постоянная), левая часть которого сохраняет постоянное значение при подстановке любого решения… …   Большая советская энциклопедия

  • Первый интеграл — системы обыкновенных дифференциальных уравнений дифференцируемая функция , , такая, что её производная по направлению векторного поля …   Википедия

  • Интеграл (значения) — Интеграл (см. также Первообразная, Численное интегрирование, Интегрирование по частям) математический оператор: Определённый интеграл Неопределённый интеграл различные определения интегралов: Интеграл расширение понятия суммы Интеграл Ито… …   Википедия

  • интеграл — а, м. intégrale f. <лат. integer целый. Математическое понятие о целой величине как сумме своих бесконечно малых частей. Нахождение интеграла. БАС 1. Найти интеграл уравнения. 1766. Котельников Геодет 175. // Сл. 18. Алферинька недурно… …   Исторический словарь галлицизмов русского языка

  • Интеграл (компания) — У этого термина существуют и другие значения, см. Интеграл (значения). ОАО «Интеграл» Год основания 1962 Расположение Минск …   Википедия

  • Общий интеграл —         обыкновенного дифференциального уравнения          F (x, у, у ,..., y (n)) =0          соотношение          Φ(х, у, C1,..., Cn) =0,          содержащее и существенных произвольных постоянных C1,..., Cn, следствием которого является данное …   Большая советская энциклопедия

  • ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ — интеграл по поверхности. Пусть поверхность 5, расположенная в трехмерном евклидовом пространстве R3 с декартовыми координатами х, у, z и имеющая, быть может, самопересечения, задана векторным представлением где (1) непрерывно дифференцируемая… …   Математическая энциклопедия

  • НЕСОБСТВЕННЫЙ ИНТЕГРАЛ — интеграл от неограниченной функции или от функции по неограниченному множеству. Пусть функция f определена на конечном или бесконечном полуинтервале , и для любого функция f интегрируема но Риману (по Лебегу) на отрезке Тогда предел (в случае… …   Математическая энциклопедия

  • Формулировка через интеграл по траекториям — Формулировка через интеграл по траеториям квантовой механики  это описание квантовой теории, которое обобщает принцип действия классической механики. Оно замещает классическое обозначение одиночной, уникальной траектории для системы суммой, или… …   Википедия

  • Фазовый интеграл — (англ. Phase Integral)  один из фундаментальных интегралов квантовой механики, впервые предложенный Фейнманом в начале 60 х годов XX века. Подобно интегралу по траекториям, этот интеграл позволяет находить смещение фазы, обусловленное… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»